Struct gapi_grpc::google::cloud::automl::v1beta1::BatchPredictOutputConfig[][src]

pub struct BatchPredictOutputConfig {
    pub destination: Option<Destination>,
}

Output configuration for BatchPredict Action.

As destination the

[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be “prediction--”, where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for.

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and messagefields.

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and messagefields.

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_classification.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = “OK” if prediction completed successfully, or an error code with message otherwise. If STATUS is not “OK” then the .JSON file for that line may not exist or be empty.

    Each .JSON file, assuming STATUS is "OK", will contain a list of
    AnnotationPayload protos in JSON format, which are the predictions
    for the video time segment the file is assigned to in the
    video_classification.csv. All AnnotationPayload protos will have
    video_classification field set, and will be sorted by
    video_classification.type field (note that the returned types are
    governed by `classifaction_types` parameter in
    [PredictService.BatchPredictRequest.params][]).

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_object_tracking.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = “OK” if prediction completed successfully, or an error code with message otherwise. If STATUS is not “OK” then the .JSON file for that line may not exist or be empty.

    Each .JSON file, assuming STATUS is "OK", will contain a list of
    AnnotationPayload protos in JSON format, which are the predictions
    for each frame of the video time segment the file is assigned to in
    video_object_tracking.csv. All AnnotationPayload protos will have
    video_object_tracking field set.

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message.

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message.

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message.

[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] or

[bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination] is set (either is allowed). GCS case: In the created directory files tables_1.csv, tables_2.csv,…, tables_N.csv will be created, where N may be 1, and depends on the total number of the successfully predicted rows. For all CLASSIFICATION

[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: Each .csv file will contain a header, listing all columns’

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] given on input followed by M target column names in the format of

“<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>__score“ where M is the number of distinct target values, i.e. number of distinct values in the target column of the table used to train the model. Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, columns having the corresponding prediction [scores][google.cloud.automl.v1beta1.TablesAnnotation.score]. For REGRESSION and FORECASTING

[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: Each .csv file will contain a header, listing all columns’ [display_name-s][google.cloud.automl.v1beta1.display_name] given on input followed by the predicted target column with name in the format of

“predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>“ Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, column having the predicted target value. If prediction for any rows failed, then an additional errors_1.csv, errors_2.csv,…, errors_N.csv will be created (N depends on total number of failed rows). These files will have analogous format as tables_*.csv, but always with a single target column having

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) represented as a JSON string, and containing only code and message. BigQuery case:

[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination] pointing to a BigQuery project must be set. In the given project a new dataset will be created with name prediction_<model-display-name>_<timestamp-of-prediction-call> where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ “based on ISO-8601” format. In the dataset two tables will be created, predictions, and errors. The predictions table’s column names will be the input columns’

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] followed by the target column with name in the format of

“predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>“ The input feature columns will contain the respective values of successfully predicted rows, with the target column having an ARRAY of

[AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload], represented as STRUCT-s, containing [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation]. The errors table contains rows for which the prediction has failed, it has analogous input columns while the target column name is in the format of

“errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>“, and as a value has

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) represented as a STRUCT, and containing only code and message.

Fields

destination: Option<Destination>

Required. The destination of the output.

Trait Implementations

impl Clone for BatchPredictOutputConfig[src]

impl Debug for BatchPredictOutputConfig[src]

impl Default for BatchPredictOutputConfig[src]

impl Message for BatchPredictOutputConfig[src]

impl PartialEq<BatchPredictOutputConfig> for BatchPredictOutputConfig[src]

impl StructuralPartialEq for BatchPredictOutputConfig[src]

Auto Trait Implementations

impl RefUnwindSafe for BatchPredictOutputConfig

impl Send for BatchPredictOutputConfig

impl Sync for BatchPredictOutputConfig

impl Unpin for BatchPredictOutputConfig

impl UnwindSafe for BatchPredictOutputConfig

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T> Instrument for T[src]

impl<T> Instrument for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> IntoRequest<T> for T[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]

impl<T> WithSubscriber for T[src]