Struct gapi_grpc::google::cloud::automl::v1beta1::TablesModelMetadata [−][src]
Model metadata specific to AutoML Tables.
Fields
target_column_spec: Option<ColumnSpec>
Column spec of the dataset’s primary table’s column the model is predicting. Snapshotted when model creation started. Only 3 fields are used: name - May be set on CreateModel, if it’s not then the ColumnSpec corresponding to the current target_column_spec_id of the dataset the model is trained from is used. If neither is set, CreateModel will error. display_name - Output only. data_type - Output only.
input_feature_column_specs: Vec<ColumnSpec>
Column specs of the dataset’s primary table’s columns, on which the model is trained and which are used as the input for predictions. The
[target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] as well as, according to dataset’s state upon model creation,
[weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], and
[ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] must never be included here.
Only 3 fields are used:
-
name - May be set on CreateModel, if set only the columns specified are used, otherwise all primary table’s columns (except the ones listed above) are used for the training and prediction input.
-
display_name - Output only.
-
data_type - Output only.
optimization_objective: String
Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set.
The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used.
CLASSIFICATION_BINARY: “MAXIMIZE_AU_ROC” (default) - Maximize the area under the receiver operating characteristic (ROC) curve. “MINIMIZE_LOG_LOSS” - Minimize log loss. “MAXIMIZE_AU_PRC” - Maximize the area under the precision-recall curve. “MAXIMIZE_PRECISION_AT_RECALL” - Maximize precision for a specified recall value. “MAXIMIZE_RECALL_AT_PRECISION” - Maximize recall for a specified precision value.
CLASSIFICATION_MULTI_CLASS : “MINIMIZE_LOG_LOSS” (default) - Minimize log loss.
REGRESSION: “MINIMIZE_RMSE” (default) - Minimize root-mean-squared error (RMSE). “MINIMIZE_MAE” - Minimize mean-absolute error (MAE). “MINIMIZE_RMSLE” - Minimize root-mean-squared log error (RMSLE).
tables_model_column_info: Vec<TablesModelColumnInfo>
Output only. Auxiliary information for each of the input_feature_column_specs with respect to this particular model.
train_budget_milli_node_hours: i64
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour.
The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend’s discretion. This especially may happen when further model training ceases to provide any improvements.
If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won’t be attempted and will error.
The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
train_cost_milli_node_hours: i64
Output only. The actual training cost of the model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed the train budget.
disable_early_stopping: bool
Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
additional_optimization_objective_config: Option<AdditionalOptimizationObjectiveConfig>
Additional optimization objective configuration. Required for
MAXIMIZE_PRECISION_AT_RECALL
and MAXIMIZE_RECALL_AT_PRECISION
,
otherwise unused.
Trait Implementations
impl Clone for TablesModelMetadata
[src]
fn clone(&self) -> TablesModelMetadata
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for TablesModelMetadata
[src]
impl Default for TablesModelMetadata
[src]
fn default() -> TablesModelMetadata
[src]
impl Message for TablesModelMetadata
[src]
fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
fn encoded_len(&self) -> usize
[src]
fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<TablesModelMetadata> for TablesModelMetadata
[src]
fn eq(&self, other: &TablesModelMetadata) -> bool
[src]
fn ne(&self, other: &TablesModelMetadata) -> bool
[src]
impl StructuralPartialEq for TablesModelMetadata
[src]
Auto Trait Implementations
impl RefUnwindSafe for TablesModelMetadata
impl Send for TablesModelMetadata
impl Sync for TablesModelMetadata
impl Unpin for TablesModelMetadata
impl UnwindSafe for TablesModelMetadata
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,