Struct gapi_grpc::google::privacy::dlp::v2::CryptoDeterministicConfig [−][src]
Pseudonymization method that generates deterministic encryption for the given input. Outputs a base64 encoded representation of the encrypted output. Uses AES-SIV based on the RFC https://tools.ietf.org/html/rfc5297.
Fields
crypto_key: Option<CryptoKey>
The key used by the encryption function.
surrogate_info_type: Option<InfoType>
The custom info type to annotate the surrogate with. This annotation will be applied to the surrogate by prefixing it with the name of the custom info type followed by the number of characters comprising the surrogate. The following scheme defines the format: {info type name}({surrogate character count}):{surrogate}
For example, if the name of custom info type is ‘MY_TOKEN_INFO_TYPE’ and the surrogate is ‘abc’, the full replacement value will be: ‘MY_TOKEN_INFO_TYPE(3):abc’
This annotation identifies the surrogate when inspecting content using the custom info type ‘Surrogate’. This facilitates reversal of the surrogate when it occurs in free text.
Note: For record transformations where the entire cell in a table is being transformed, surrogates are not mandatory. Surrogates are used to denote the location of the token and are necessary for re-identification in free form text.
In order for inspection to work properly, the name of this info type must not occur naturally anywhere in your data; otherwise, inspection may either
- reverse a surrogate that does not correspond to an actual identifier
- be unable to parse the surrogate and result in an error
Therefore, choose your custom info type name carefully after considering what your data looks like. One way to select a name that has a high chance of yielding reliable detection is to include one or more unicode characters that are highly improbable to exist in your data. For example, assuming your data is entered from a regular ASCII keyboard, the symbol with the hex code point 29DD might be used like so: ⧝MY_TOKEN_TYPE.
context: Option<FieldId>
A context may be used for higher security and maintaining referential integrity such that the same identifier in two different contexts will be given a distinct surrogate. The context is appended to plaintext value being encrypted. On decryption the provided context is validated against the value used during encryption. If a context was provided during encryption, same context must be provided during decryption as well.
If the context is not set, plaintext would be used as is for encryption. If the context is set but:
- there is no record present when transforming a given value or
- the field is not present when transforming a given value,
plaintext would be used as is for encryption.
Note that case (1) is expected when an InfoTypeTransformation
is
applied to both structured and non-structured ContentItem
s.
Trait Implementations
impl Clone for CryptoDeterministicConfig
[src]
fn clone(&self) -> CryptoDeterministicConfig
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for CryptoDeterministicConfig
[src]
impl Default for CryptoDeterministicConfig
[src]
impl Message for CryptoDeterministicConfig
[src]
fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
fn encoded_len(&self) -> usize
[src]
fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<CryptoDeterministicConfig> for CryptoDeterministicConfig
[src]
fn eq(&self, other: &CryptoDeterministicConfig) -> bool
[src]
fn ne(&self, other: &CryptoDeterministicConfig) -> bool
[src]
impl StructuralPartialEq for CryptoDeterministicConfig
[src]
Auto Trait Implementations
impl RefUnwindSafe for CryptoDeterministicConfig
impl Send for CryptoDeterministicConfig
impl Sync for CryptoDeterministicConfig
impl Unpin for CryptoDeterministicConfig
impl UnwindSafe for CryptoDeterministicConfig
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,