Struct gapi_grpc::google::cloud::datalabeling::v1beta1::EvaluationJobConfig [−][src]
Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.
Fields
input_config: Option<InputConfig>
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
.annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
evaluation_config: Option<EvaluationConfig>
Required. Details for calculating evaluation metrics and creating
[Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
human_annotation_config: Option<HumanAnnotationConfig>
Optional. Details for human annotation of your data. If you set
[labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
bigquery_import_keys: HashMap<String, String>
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
.reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
.label_json_key
: the label key for prediction output. Required.label_score_json_key
: the score key for prediction output. Required.bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection.
example_count: i32
Required. The maximum number of predictions to sample and save to BigQuery
during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit
overrides example_sample_percentage
: even if the service has not sampled
enough predictions to fulfill example_sample_perecentage
during an
interval, it stops sampling predictions when it meets this limit.
example_sample_percentage: f64
Required. Fraction of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
evaluation_job_alert_config: Option<EvaluationJobAlertConfig>
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
human_annotation_request_config: Option<HumanAnnotationRequestConfig>
Required. Details for how you want human reviewers to provide ground truth labels.
Trait Implementations
impl Clone for EvaluationJobConfig
[src]
fn clone(&self) -> EvaluationJobConfig
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for EvaluationJobConfig
[src]
impl Default for EvaluationJobConfig
[src]
fn default() -> EvaluationJobConfig
[src]
impl Message for EvaluationJobConfig
[src]
fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
fn encoded_len(&self) -> usize
[src]
fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<EvaluationJobConfig> for EvaluationJobConfig
[src]
fn eq(&self, other: &EvaluationJobConfig) -> bool
[src]
fn ne(&self, other: &EvaluationJobConfig) -> bool
[src]
impl StructuralPartialEq for EvaluationJobConfig
[src]
Auto Trait Implementations
impl RefUnwindSafe for EvaluationJobConfig
impl Send for EvaluationJobConfig
impl Sync for EvaluationJobConfig
impl Unpin for EvaluationJobConfig
impl UnwindSafe for EvaluationJobConfig
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,