Struct gapi_grpc::google::cloud::bigquery::v2::model::training_run::TrainingOptions [−][src]
Fields
max_iterations: i64
The maximum number of iterations in training. Used only for iterative training algorithms.
loss_type: i32
Type of loss function used during training run.
learn_rate: f64
Learning rate in training. Used only for iterative training algorithms.
l1_regularization: Option<f64>
L1 regularization coefficient.
l2_regularization: Option<f64>
L2 regularization coefficient.
min_relative_progress: Option<f64>
When early_stop is true, stops training when accuracy improvement is less than ‘min_relative_progress’. Used only for iterative training algorithms.
warm_start: Option<bool>
Whether to train a model from the last checkpoint.
early_stop: Option<bool>
Whether to stop early when the loss doesn’t improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms.
input_label_columns: Vec<String>
Name of input label columns in training data.
data_split_method: i32
The data split type for training and evaluation, e.g. RANDOM.
data_split_eval_fraction: f64
The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
data_split_column: String
The column to split data with. This column won’t be used as a feature.
- When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
- When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type-properties
learn_rate_strategy: i32
The strategy to determine learn rate for the current iteration.
initial_learn_rate: f64
Specifies the initial learning rate for the line search learn rate strategy.
label_class_weights: HashMap<String, f64>
Weights associated with each label class, for rebalancing the training data. Only applicable for classification models.
user_column: String
User column specified for matrix factorization models.
item_column: String
Item column specified for matrix factorization models.
distance_type: i32
Distance type for clustering models.
num_clusters: i64
Number of clusters for clustering models.
model_uri: String
[Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models.
optimization_strategy: i32
Optimization strategy for training linear regression models.
Hidden units for dnn models.
batch_size: i64
Batch size for dnn models.
dropout: Option<f64>
Dropout probability for dnn models.
max_tree_depth: i64
Maximum depth of a tree for boosted tree models.
subsample: f64
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
min_split_loss: Option<f64>
Minimum split loss for boosted tree models.
num_factors: i64
Num factors specified for matrix factorization models.
feedback_type: i32
Feedback type that specifies which algorithm to run for matrix factorization.
wals_alpha: Option<f64>
Hyperparameter for matrix factoration when implicit feedback type is specified.
kmeans_initialization_method: i32
The method used to initialize the centroids for kmeans algorithm.
kmeans_initialization_column: String
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
time_series_timestamp_column: String
Column to be designated as time series timestamp for ARIMA model.
time_series_data_column: String
Column to be designated as time series data for ARIMA model.
auto_arima: bool
Whether to enable auto ARIMA or not.
non_seasonal_order: Option<ArimaOrder>
A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are the AR order, the degree of differencing, and the MA order.
data_frequency: i32
The data frequency of a time series.
include_drift: bool
Include drift when fitting an ARIMA model.
holiday_region: i32
The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled.
time_series_id_column: String
The id column that will be used to indicate different time series to forecast in parallel.
horizon: i64
The number of periods ahead that need to be forecasted.
preserve_input_structs: bool
Whether to preserve the input structs in output feature names. Suppose there is a struct A with field b. When false (default), the output feature name is A_b. When true, the output feature name is A.b.
auto_arima_max_order: i64
The max value of non-seasonal p and q.
Implementations
impl TrainingOptions
[src]
pub fn loss_type(&self) -> LossType
[src]
Returns the enum value of loss_type
, or the default if the field is set to an invalid enum value.
pub fn set_loss_type(&mut self, value: LossType)
[src]
Sets loss_type
to the provided enum value.
pub fn data_split_method(&self) -> DataSplitMethod
[src]
Returns the enum value of data_split_method
, or the default if the field is set to an invalid enum value.
pub fn set_data_split_method(&mut self, value: DataSplitMethod)
[src]
Sets data_split_method
to the provided enum value.
pub fn learn_rate_strategy(&self) -> LearnRateStrategy
[src]
Returns the enum value of learn_rate_strategy
, or the default if the field is set to an invalid enum value.
pub fn set_learn_rate_strategy(&mut self, value: LearnRateStrategy)
[src]
Sets learn_rate_strategy
to the provided enum value.
pub fn distance_type(&self) -> DistanceType
[src]
Returns the enum value of distance_type
, or the default if the field is set to an invalid enum value.
pub fn set_distance_type(&mut self, value: DistanceType)
[src]
Sets distance_type
to the provided enum value.
pub fn optimization_strategy(&self) -> OptimizationStrategy
[src]
Returns the enum value of optimization_strategy
, or the default if the field is set to an invalid enum value.
pub fn set_optimization_strategy(&mut self, value: OptimizationStrategy)
[src]
Sets optimization_strategy
to the provided enum value.
pub fn feedback_type(&self) -> FeedbackType
[src]
Returns the enum value of feedback_type
, or the default if the field is set to an invalid enum value.
pub fn set_feedback_type(&mut self, value: FeedbackType)
[src]
Sets feedback_type
to the provided enum value.
pub fn kmeans_initialization_method(&self) -> KmeansInitializationMethod
[src]
Returns the enum value of kmeans_initialization_method
, or the default if the field is set to an invalid enum value.
pub fn set_kmeans_initialization_method(
&mut self,
value: KmeansInitializationMethod
)
[src]
&mut self,
value: KmeansInitializationMethod
)
Sets kmeans_initialization_method
to the provided enum value.
pub fn data_frequency(&self) -> DataFrequency
[src]
Returns the enum value of data_frequency
, or the default if the field is set to an invalid enum value.
pub fn set_data_frequency(&mut self, value: DataFrequency)
[src]
Sets data_frequency
to the provided enum value.
pub fn holiday_region(&self) -> HolidayRegion
[src]
Returns the enum value of holiday_region
, or the default if the field is set to an invalid enum value.
pub fn set_holiday_region(&mut self, value: HolidayRegion)
[src]
Sets holiday_region
to the provided enum value.
Trait Implementations
impl Clone for TrainingOptions
[src]
fn clone(&self) -> TrainingOptions
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for TrainingOptions
[src]
impl Default for TrainingOptions
[src]
fn default() -> TrainingOptions
[src]
impl Message for TrainingOptions
[src]
fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
fn encoded_len(&self) -> usize
[src]
fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<TrainingOptions> for TrainingOptions
[src]
fn eq(&self, other: &TrainingOptions) -> bool
[src]
fn ne(&self, other: &TrainingOptions) -> bool
[src]
impl StructuralPartialEq for TrainingOptions
[src]
Auto Trait Implementations
impl RefUnwindSafe for TrainingOptions
impl Send for TrainingOptions
impl Sync for TrainingOptions
impl Unpin for TrainingOptions
impl UnwindSafe for TrainingOptions
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,