Struct gapi_grpc::google::cloud::aiplatform::v1beta1::BatchPredictionJob [−][src]
A job that uses a [Model][google.cloud.aiplatform.v1beta1.BatchPredictionJob.model] to produce predictions on multiple [input instances][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.
Fields
name: String
Output only. Resource name of the BatchPredictionJob.
display_name: String
Required. The user-defined name of this BatchPredictionJob.
model: String
Required. The name of the Model that produces the predictions via this job, must share the same ancestor Location. Starting this job has no impact on any existing deployments of the Model and their resources.
input_config: Option<InputConfig>
Required. Input configuration of the instances on which predictions are performed. The schema of any single instance may be specified via the [Model’s][google.cloud.aiplatform.v1beta1.BatchPredictionJob.model] [PredictSchemata’s][google.cloud.aiplatform.v1beta1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri].
model_parameters: Option<Value>
The parameters that govern the predictions. The schema of the parameters may be specified via the [Model’s][google.cloud.aiplatform.v1beta1.BatchPredictionJob.model] [PredictSchemata’s][google.cloud.aiplatform.v1beta1.Model.predict_schemata] [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri].
output_config: Option<OutputConfig>
Required. The Configuration specifying where output predictions should be written. The schema of any single prediction may be specified as a concatenation of [Model’s][google.cloud.aiplatform.v1beta1.BatchPredictionJob.model] [PredictSchemata’s][google.cloud.aiplatform.v1beta1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] and [prediction_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.prediction_schema_uri].
dedicated_resources: Option<BatchDedicatedResources>
The config of resources used by the Model during the batch prediction. If the Model [supports][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types] DEDICATED_RESOURCES this config may be provided (and the job will use these resources), if the Model doesn’t support AUTOMATIC_RESOURCES, this config must be provided.
manual_batch_tuning_parameters: Option<ManualBatchTuningParameters>
Immutable. Parameters configuring the batch behavior. Currently only applicable when [dedicated_resources][google.cloud.aiplatform.v1beta1.BatchPredictionJob.dedicated_resources] are used (in other cases Vertex AI does the tuning itself).
generate_explanation: bool
Generate explanation with the batch prediction results.
When set to true
, the batch prediction output changes based on the
predictions_format
field of the
[BatchPredictionJob.output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config] object:
bigquery
: output includes a column namedexplanation
. The value is a struct that conforms to the [Explanation][google.cloud.aiplatform.v1beta1.Explanation] object.jsonl
: The JSON objects on each line include an additional entry keyedexplanation
. The value of the entry is a JSON object that conforms to the [Explanation][google.cloud.aiplatform.v1beta1.Explanation] object.csv
: Generating explanations for CSV format is not supported.
If this field is set to true, either the [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] or [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] must be populated.
explanation_spec: Option<ExplanationSpec>
Explanation configuration for this BatchPredictionJob. Can be
specified only if [generate_explanation][google.cloud.aiplatform.v1beta1.BatchPredictionJob.generate_explanation] is set to true
.
This value overrides the value of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec]. All fields of [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] are optional in the request. If a field of the [explanation_spec][google.cloud.aiplatform.v1beta1.BatchPredictionJob.explanation_spec] object is not populated, the corresponding field of the [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] object is inherited.
output_info: Option<OutputInfo>
Output only. Information further describing the output of this job.
state: i32
Output only. The detailed state of the job.
error: Option<Status>
Output only. Only populated when the job’s state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.
partial_failures: Vec<Status>
Output only. Partial failures encountered. For example, single files that can’t be read. This field never exceeds 20 entries. Status details fields contain standard GCP error details.
resources_consumed: Option<ResourcesConsumed>
Output only. Information about resources that had been consumed by this job. Provided in real time at best effort basis, as well as a final value once the job completes.
Note: This field currently may be not populated for batch predictions that use AutoML Models.
completion_stats: Option<CompletionStats>
Output only. Statistics on completed and failed prediction instances.
create_time: Option<Timestamp>
Output only. Time when the BatchPredictionJob was created.
start_time: Option<Timestamp>
Output only. Time when the BatchPredictionJob for the first time entered the
JOB_STATE_RUNNING
state.
end_time: Option<Timestamp>
Output only. Time when the BatchPredictionJob entered any of the following states:
JOB_STATE_SUCCEEDED
, JOB_STATE_FAILED
, JOB_STATE_CANCELLED
.
update_time: Option<Timestamp>
Output only. Time when the BatchPredictionJob was most recently updated.
labels: HashMap<String, String>
The labels with user-defined metadata to organize BatchPredictionJobs.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
encryption_spec: Option<EncryptionSpec>
Customer-managed encryption key options for a BatchPredictionJob. If this is set, then all resources created by the BatchPredictionJob will be encrypted with the provided encryption key.
Implementations
impl BatchPredictionJob
[src]
pub fn state(&self) -> JobState
[src]
Returns the enum value of state
, or the default if the field is set to an invalid enum value.
pub fn set_state(&mut self, value: JobState)
[src]
Sets state
to the provided enum value.
Trait Implementations
impl Clone for BatchPredictionJob
[src]
fn clone(&self) -> BatchPredictionJob
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for BatchPredictionJob
[src]
impl Default for BatchPredictionJob
[src]
fn default() -> BatchPredictionJob
[src]
impl Message for BatchPredictionJob
[src]
fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
fn encoded_len(&self) -> usize
[src]
fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<BatchPredictionJob> for BatchPredictionJob
[src]
fn eq(&self, other: &BatchPredictionJob) -> bool
[src]
fn ne(&self, other: &BatchPredictionJob) -> bool
[src]
impl StructuralPartialEq for BatchPredictionJob
[src]
Auto Trait Implementations
impl RefUnwindSafe for BatchPredictionJob
impl Send for BatchPredictionJob
impl Sync for BatchPredictionJob
impl Unpin for BatchPredictionJob
impl UnwindSafe for BatchPredictionJob
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,