Enum gapi_grpc::google::cloud::aiplatform::v1beta1::smooth_grad_config::GradientNoiseSigma[][src]

pub enum GradientNoiseSigma {
    NoiseSigma(f32),
    FeatureNoiseSigma(FeatureNoiseSigma),
}

Represents the standard deviation of the gaussian kernel that will be used to add noise to the interpolated inputs prior to computing gradients.

Variants

NoiseSigma(f32)

This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about normalization.

For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.

If the distribution is different per feature, set [feature_noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.feature_noise_sigma] instead for each feature.

FeatureNoiseSigma(FeatureNoiseSigma)

This is similar to [noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.noise_sigma], but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, [noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.noise_sigma] will be used for all features.

Implementations

impl GradientNoiseSigma[src]

pub fn encode<B>(&self, buf: &mut B) where
    B: BufMut
[src]

pub fn merge<B>(
    field: &mut Option<GradientNoiseSigma>,
    tag: u32,
    wire_type: WireType,
    buf: &mut B,
    ctx: DecodeContext
) -> Result<(), DecodeError> where
    B: Buf
[src]

pub fn encoded_len(&self) -> usize[src]

Trait Implementations

impl Clone for GradientNoiseSigma[src]

impl Debug for GradientNoiseSigma[src]

impl PartialEq<GradientNoiseSigma> for GradientNoiseSigma[src]

impl StructuralPartialEq for GradientNoiseSigma[src]

Auto Trait Implementations

impl RefUnwindSafe for GradientNoiseSigma

impl Send for GradientNoiseSigma

impl Sync for GradientNoiseSigma

impl Unpin for GradientNoiseSigma

impl UnwindSafe for GradientNoiseSigma

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T> Instrument for T[src]

impl<T> Instrument for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> IntoRequest<T> for T[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]

impl<T> WithSubscriber for T[src]