Enum gapi_grpc::google::cloud::aiplatform::v1beta1::smooth_grad_config::GradientNoiseSigma [−][src]
Represents the standard deviation of the gaussian kernel that will be used to add noise to the interpolated inputs prior to computing gradients.
Variants
NoiseSigma(f32)
This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about normalization.
For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.
If the distribution is different per feature, set [feature_noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.feature_noise_sigma] instead for each feature.
FeatureNoiseSigma(FeatureNoiseSigma)
This is similar to [noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.noise_sigma], but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, [noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.noise_sigma] will be used for all features.
Implementations
impl GradientNoiseSigma
[src]
pub fn encode<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
pub fn merge<B>(
field: &mut Option<GradientNoiseSigma>,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
field: &mut Option<GradientNoiseSigma>,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
pub fn encoded_len(&self) -> usize
[src]
Trait Implementations
impl Clone for GradientNoiseSigma
[src]
fn clone(&self) -> GradientNoiseSigma
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for GradientNoiseSigma
[src]
impl PartialEq<GradientNoiseSigma> for GradientNoiseSigma
[src]
fn eq(&self, other: &GradientNoiseSigma) -> bool
[src]
fn ne(&self, other: &GradientNoiseSigma) -> bool
[src]
impl StructuralPartialEq for GradientNoiseSigma
[src]
Auto Trait Implementations
impl RefUnwindSafe for GradientNoiseSigma
impl Send for GradientNoiseSigma
impl Sync for GradientNoiseSigma
impl Unpin for GradientNoiseSigma
impl UnwindSafe for GradientNoiseSigma
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,