Struct gapi_grpc::google::cloud::aiplatform::v1beta1::explanation_metadata::InputMetadata [−][src]
Metadata of the input of a feature.
Fields other than [InputMetadata.input_baselines][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.input_baselines] are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
Fields
input_baselines: Vec<Value>
Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attributions.baseline_attribution][].
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature’s input in the [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances][]. The schema of any single instance may be specified via Endpoint’s DeployedModels’ [Model’s][google.cloud.aiplatform.v1beta1.DeployedModel.model] [PredictSchemata’s][google.cloud.aiplatform.v1beta1.Model.predict_schemata] [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri].
input_tensor_name: String
Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
encoding: i32
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
modality: String
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
feature_value_domain: Option<FeatureValueDomain>
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
indices_tensor_name: String
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
dense_shape_tensor_name: String
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
index_feature_mapping: Vec<String>
A list of feature names for each index in the input tensor. Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
encoded_tensor_name: String
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable.
An encoded tensor is generated if the input tensor is encoded by a lookup table.
encoded_baselines: Vec<Value>
A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
visualization: Option<Visualization>
Visualization configurations for image explanation.
group_name: String
Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in [ featureAttributions][Attribution.feature_attributions], keyed by the group name.
Implementations
impl InputMetadata
[src]
pub fn encoding(&self) -> Encoding
[src]
Returns the enum value of encoding
, or the default if the field is set to an invalid enum value.
pub fn set_encoding(&mut self, value: Encoding)
[src]
Sets encoding
to the provided enum value.
Trait Implementations
impl Clone for InputMetadata
[src]
fn clone(&self) -> InputMetadata
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for InputMetadata
[src]
impl Default for InputMetadata
[src]
fn default() -> InputMetadata
[src]
impl Message for InputMetadata
[src]
fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
fn encoded_len(&self) -> usize
[src]
fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<InputMetadata> for InputMetadata
[src]
fn eq(&self, other: &InputMetadata) -> bool
[src]
fn ne(&self, other: &InputMetadata) -> bool
[src]
impl StructuralPartialEq for InputMetadata
[src]
Auto Trait Implementations
impl RefUnwindSafe for InputMetadata
impl Send for InputMetadata
impl Sync for InputMetadata
impl Unpin for InputMetadata
impl UnwindSafe for InputMetadata
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,