Struct gapi_grpc::google::cloud::aiplatform::v1::DataLabelingJob [−][src]
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
Fields
name: String
Output only. Resource name of the DataLabelingJob.
display_name: String
Required. The user-defined name of the DataLabelingJob. The name can be up to 128 characters long and can be consist of any UTF-8 characters. Display name of a DataLabelingJob.
datasets: Vec<String>
Required. Dataset resource names. Right now we only support labeling from a single
Dataset.
Format:
projects/{project}/locations/{location}/datasets/{dataset}
annotation_labels: HashMap<String, String>
Labels to assign to annotations generated by this DataLabelingJob.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
labeler_count: i32
Required. Number of labelers to work on each DataItem.
instruction_uri: String
Required. The Google Cloud Storage location of the instruction pdf. This pdf is shared with labelers, and provides detailed description on how to label DataItems in Datasets.
inputs_schema_uri: String
Required. Points to a YAML file stored on Google Cloud Storage describing the config for a specific type of DataLabelingJob. The schema files that can be used here are found in the https://storage.googleapis.com/google-cloud-aiplatform bucket in the /schema/datalabelingjob/inputs/ folder.
inputs: Option<Value>
Required. Input config parameters for the DataLabelingJob.
state: i32
Output only. The detailed state of the job.
labeling_progress: i32
Output only. Current labeling job progress percentage scaled in interval [0, 100], indicating the percentage of DataItems that has been finished.
current_spend: Option<Money>
Output only. Estimated cost(in US dollars) that the DataLabelingJob has incurred to date.
create_time: Option<Timestamp>
Output only. Timestamp when this DataLabelingJob was created.
update_time: Option<Timestamp>
Output only. Timestamp when this DataLabelingJob was updated most recently.
error: Option<Status>
Output only. DataLabelingJob errors. It is only populated when job’s state is
JOB_STATE_FAILED
or JOB_STATE_CANCELLED
.
labels: HashMap<String, String>
The labels with user-defined metadata to organize your DataLabelingJobs.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable. Following system labels exist for each DataLabelingJob:
- “aiplatform.googleapis.com/schema”: output only, its value is the [inputs_schema][google.cloud.aiplatform.v1.DataLabelingJob.inputs_schema_uri]’s title.
specialist_pools: Vec<String>
The SpecialistPools’ resource names associated with this job.
encryption_spec: Option<EncryptionSpec>
Customer-managed encryption key spec for a DataLabelingJob. If set, this DataLabelingJob will be secured by this key.
Note: Annotations created in the DataLabelingJob are associated with the EncryptionSpec of the Dataset they are exported to.
active_learning_config: Option<ActiveLearningConfig>
Parameters that configure the active learning pipeline. Active learning will label the data incrementally via several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
Implementations
impl DataLabelingJob
[src]
pub fn state(&self) -> JobState
[src]
Returns the enum value of state
, or the default if the field is set to an invalid enum value.
pub fn set_state(&mut self, value: JobState)
[src]
Sets state
to the provided enum value.
Trait Implementations
impl Clone for DataLabelingJob
[src]
fn clone(&self) -> DataLabelingJob
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for DataLabelingJob
[src]
impl Default for DataLabelingJob
[src]
fn default() -> DataLabelingJob
[src]
impl Message for DataLabelingJob
[src]
fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
fn encoded_len(&self) -> usize
[src]
fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<DataLabelingJob> for DataLabelingJob
[src]
fn eq(&self, other: &DataLabelingJob) -> bool
[src]
fn ne(&self, other: &DataLabelingJob) -> bool
[src]
impl StructuralPartialEq for DataLabelingJob
[src]
Auto Trait Implementations
impl RefUnwindSafe for DataLabelingJob
impl Send for DataLabelingJob
impl Sync for DataLabelingJob
impl Unpin for DataLabelingJob
impl UnwindSafe for DataLabelingJob
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> IntoRequest<T> for T
[src]
pub fn into_request(self) -> Request<T>
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WithSubscriber for T
[src]
pub fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
[src]
S: Into<Dispatch>,