1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#![allow(deprecated)]
#![allow(clippy::all)]
use crate::distributions::Distribution;
use crate::Rng;
use std::f64::consts::PI;
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Cauchy {
    median: f64,
    scale: f64,
}
impl Cauchy {
    
    
    
    pub fn new(median: f64, scale: f64) -> Cauchy {
        assert!(scale > 0.0, "Cauchy::new called with scale factor <= 0");
        Cauchy { median, scale }
    }
}
impl Distribution<f64> for Cauchy {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        
        let x = rng.gen::<f64>();
        
        
        let comp_dev = (PI * x).tan();
        
        let result = self.median + self.scale * comp_dev;
        result
    }
}
#[cfg(test)]
mod test {
    use super::Cauchy;
    use crate::distributions::Distribution;
    fn median(mut numbers: &mut [f64]) -> f64 {
        sort(&mut numbers);
        let mid = numbers.len() / 2;
        numbers[mid]
    }
    fn sort(numbers: &mut [f64]) {
        numbers.sort_by(|a, b| a.partial_cmp(b).unwrap());
    }
    #[test]
    fn test_cauchy_averages() {
        
        
        let cauchy = Cauchy::new(10.0, 5.0);
        let mut rng = crate::test::rng(123);
        let mut numbers: [f64; 1000] = [0.0; 1000];
        let mut sum = 0.0;
        for i in 0..1000 {
            numbers[i] = cauchy.sample(&mut rng);
            sum += numbers[i];
        }
        let median = median(&mut numbers);
        println!("Cauchy median: {}", median);
        assert!((median - 10.0).abs() < 0.4); 
        let mean = sum / 1000.0;
        println!("Cauchy mean: {}", mean);
        
        assert!((mean - 10.0).abs() > 0.4); 
    }
    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_zero() {
        Cauchy::new(0.0, 0.0);
    }
    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_neg() {
        Cauchy::new(0.0, -10.0);
    }
}