tokio/runtime/time/wheel/mod.rs
1use crate::runtime::time::{TimerHandle, TimerShared};
2use crate::time::error::InsertError;
3
4mod level;
5pub(crate) use self::level::Expiration;
6use self::level::Level;
7
8use std::{array, ptr::NonNull};
9
10use super::entry::STATE_DEREGISTERED;
11use super::EntryList;
12
13/// Timing wheel implementation.
14///
15/// This type provides the hashed timing wheel implementation that backs `Timer`
16/// and `DelayQueue`.
17///
18/// The structure is generic over `T: Stack`. This allows handling timeout data
19/// being stored on the heap or in a slab. In order to support the latter case,
20/// the slab must be passed into each function allowing the implementation to
21/// lookup timer entries.
22///
23/// See `Timer` documentation for some implementation notes.
24#[derive(Debug)]
25pub(crate) struct Wheel {
26 /// The number of milliseconds elapsed since the wheel started.
27 elapsed: u64,
28
29 /// Timer wheel.
30 ///
31 /// Levels:
32 ///
33 /// * 1 ms slots / 64 ms range
34 /// * 64 ms slots / ~ 4 sec range
35 /// * ~ 4 sec slots / ~ 4 min range
36 /// * ~ 4 min slots / ~ 4 hr range
37 /// * ~ 4 hr slots / ~ 12 day range
38 /// * ~ 12 day slots / ~ 2 yr range
39 levels: Box<[Level; NUM_LEVELS]>,
40
41 /// Entries queued for firing
42 pending: EntryList,
43}
44
45/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
46/// each, the timer is able to track time up to 2 years into the future with a
47/// precision of 1 millisecond.
48const NUM_LEVELS: usize = 6;
49
50/// The maximum duration of a `Sleep`.
51pub(super) const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;
52
53impl Wheel {
54 /// Creates a new timing wheel.
55 pub(crate) fn new() -> Wheel {
56 Wheel {
57 elapsed: 0,
58 levels: Box::new(array::from_fn(Level::new)),
59 pending: EntryList::new(),
60 }
61 }
62
63 /// Returns the number of milliseconds that have elapsed since the timing
64 /// wheel's creation.
65 pub(crate) fn elapsed(&self) -> u64 {
66 self.elapsed
67 }
68
69 /// Inserts an entry into the timing wheel.
70 ///
71 /// # Arguments
72 ///
73 /// * `item`: The item to insert into the wheel.
74 ///
75 /// # Return
76 ///
77 /// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
78 ///
79 /// `Err(Elapsed)` indicates that `when` represents an instant that has
80 /// already passed. In this case, the caller should fire the timeout
81 /// immediately.
82 ///
83 /// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
84 ///
85 /// # Safety
86 ///
87 /// This function registers item into an intrusive linked list. The caller
88 /// must ensure that `item` is pinned and will not be dropped without first
89 /// being deregistered.
90 pub(crate) unsafe fn insert(
91 &mut self,
92 item: TimerHandle,
93 ) -> Result<u64, (TimerHandle, InsertError)> {
94 let when = item.sync_when();
95
96 if when <= self.elapsed {
97 return Err((item, InsertError::Elapsed));
98 }
99
100 // Get the level at which the entry should be stored
101 let level = self.level_for(when);
102
103 unsafe {
104 self.levels[level].add_entry(item);
105 }
106
107 debug_assert!({
108 self.levels[level]
109 .next_expiration(self.elapsed)
110 .map(|e| e.deadline >= self.elapsed)
111 .unwrap_or(true)
112 });
113
114 Ok(when)
115 }
116
117 /// Removes `item` from the timing wheel.
118 pub(crate) unsafe fn remove(&mut self, item: NonNull<TimerShared>) {
119 unsafe {
120 let when = item.as_ref().registered_when();
121 if when == STATE_DEREGISTERED {
122 self.pending.remove(item);
123 } else {
124 debug_assert!(
125 self.elapsed <= when,
126 "elapsed={}; when={}",
127 self.elapsed,
128 when
129 );
130
131 let level = self.level_for(when);
132 self.levels[level].remove_entry(item);
133 }
134 }
135 }
136
137 /// Instant at which to poll.
138 pub(crate) fn poll_at(&self) -> Option<u64> {
139 self.next_expiration().map(|expiration| expiration.deadline)
140 }
141
142 /// Advances the timer up to the instant represented by `now`.
143 pub(crate) fn poll(&mut self, now: u64) -> Option<TimerHandle> {
144 loop {
145 if let Some(handle) = self.pending.pop_back() {
146 return Some(handle);
147 }
148
149 match self.next_expiration() {
150 Some(ref expiration) if expiration.deadline <= now => {
151 self.process_expiration(expiration);
152
153 self.set_elapsed(expiration.deadline);
154 }
155 _ => {
156 // in this case the poll did not indicate an expiration
157 // _and_ we were not able to find a next expiration in
158 // the current list of timers. advance to the poll's
159 // current time and do nothing else.
160 self.set_elapsed(now);
161 break;
162 }
163 }
164 }
165
166 self.pending.pop_back()
167 }
168
169 /// Returns the instant at which the next timeout expires.
170 fn next_expiration(&self) -> Option<Expiration> {
171 if !self.pending.is_empty() {
172 // Expire immediately as we have things pending firing
173 return Some(Expiration {
174 level: 0,
175 slot: 0,
176 deadline: self.elapsed,
177 });
178 }
179
180 // Check all levels
181 for (level_num, level) in self.levels.iter().enumerate() {
182 if let Some(expiration) = level.next_expiration(self.elapsed) {
183 // There cannot be any expirations at a higher level that happen
184 // before this one.
185 debug_assert!(self.no_expirations_before(level_num + 1, expiration.deadline));
186
187 return Some(expiration);
188 }
189 }
190
191 None
192 }
193
194 /// Returns the tick at which this timer wheel next needs to perform some
195 /// processing, or None if there are no timers registered.
196 pub(super) fn next_expiration_time(&self) -> Option<u64> {
197 self.next_expiration().map(|ex| ex.deadline)
198 }
199
200 /// Used for debug assertions
201 fn no_expirations_before(&self, start_level: usize, before: u64) -> bool {
202 let mut res = true;
203
204 for level in &self.levels[start_level..] {
205 if let Some(e2) = level.next_expiration(self.elapsed) {
206 if e2.deadline < before {
207 res = false;
208 }
209 }
210 }
211
212 res
213 }
214
215 /// iteratively find entries that are between the wheel's current
216 /// time and the expiration time. for each in that population either
217 /// queue it for notification (in the case of the last level) or tier
218 /// it down to the next level (in all other cases).
219 pub(crate) fn process_expiration(&mut self, expiration: &Expiration) {
220 // Note that we need to take _all_ of the entries off the list before
221 // processing any of them. This is important because it's possible that
222 // those entries might need to be reinserted into the same slot.
223 //
224 // This happens only on the highest level, when an entry is inserted
225 // more than MAX_DURATION into the future. When this happens, we wrap
226 // around, and process some entries a multiple of MAX_DURATION before
227 // they actually need to be dropped down a level. We then reinsert them
228 // back into the same position; we must make sure we don't then process
229 // those entries again or we'll end up in an infinite loop.
230 let mut entries = self.take_entries(expiration);
231
232 while let Some(item) = entries.pop_back() {
233 if expiration.level == 0 {
234 debug_assert_eq!(unsafe { item.registered_when() }, expiration.deadline);
235 }
236
237 // Try to expire the entry; this is cheap (doesn't synchronize) if
238 // the timer is not expired, and updates registered_when.
239 match unsafe { item.mark_pending(expiration.deadline) } {
240 Ok(()) => {
241 // Item was expired
242 self.pending.push_front(item);
243 }
244 Err(expiration_tick) => {
245 let level = level_for(expiration.deadline, expiration_tick);
246 unsafe {
247 self.levels[level].add_entry(item);
248 }
249 }
250 }
251 }
252 }
253
254 fn set_elapsed(&mut self, when: u64) {
255 assert!(
256 self.elapsed <= when,
257 "elapsed={:?}; when={:?}",
258 self.elapsed,
259 when
260 );
261
262 if when > self.elapsed {
263 self.elapsed = when;
264 }
265 }
266
267 /// Obtains the list of entries that need processing for the given expiration.
268 fn take_entries(&mut self, expiration: &Expiration) -> EntryList {
269 self.levels[expiration.level].take_slot(expiration.slot)
270 }
271
272 fn level_for(&self, when: u64) -> usize {
273 level_for(self.elapsed, when)
274 }
275}
276
277fn level_for(elapsed: u64, when: u64) -> usize {
278 const SLOT_MASK: u64 = (1 << 6) - 1;
279
280 // Mask in the trailing bits ignored by the level calculation in order to cap
281 // the possible leading zeros
282 let mut masked = elapsed ^ when | SLOT_MASK;
283
284 if masked >= MAX_DURATION {
285 // Fudge the timer into the top level
286 masked = MAX_DURATION - 1;
287 }
288
289 let leading_zeros = masked.leading_zeros() as usize;
290 let significant = 63 - leading_zeros;
291
292 significant / NUM_LEVELS
293}
294
295#[cfg(all(test, not(loom)))]
296mod test {
297 use super::*;
298
299 #[test]
300 fn test_level_for() {
301 for pos in 0..64 {
302 assert_eq!(0, level_for(0, pos), "level_for({pos}) -- binary = {pos:b}");
303 }
304
305 for level in 1..5 {
306 for pos in level..64 {
307 let a = pos * 64_usize.pow(level as u32);
308 assert_eq!(
309 level,
310 level_for(0, a as u64),
311 "level_for({a}) -- binary = {a:b}"
312 );
313
314 if pos > level {
315 let a = a - 1;
316 assert_eq!(
317 level,
318 level_for(0, a as u64),
319 "level_for({a}) -- binary = {a:b}"
320 );
321 }
322
323 if pos < 64 {
324 let a = a + 1;
325 assert_eq!(
326 level,
327 level_for(0, a as u64),
328 "level_for({a}) -- binary = {a:b}"
329 );
330 }
331 }
332 }
333 }
334}