ring/rsa/
signing.rs

1// Copyright 2015-2016 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15use super::{
16    bigint::{self, Prime},
17    verification, RsaEncoding, N,
18};
19/// RSA PKCS#1 1.5 signatures.
20use crate::{
21    arithmetic::montgomery::R,
22    bits, digest,
23    error::{self, KeyRejected},
24    io::{self, der, der_writer},
25    pkcs8, rand, signature,
26};
27use alloc::boxed::Box;
28
29/// An RSA key pair, used for signing.
30pub struct RsaKeyPair {
31    p: PrivatePrime<P>,
32    q: PrivatePrime<Q>,
33    qInv: bigint::Elem<P, R>,
34    qq: bigint::Modulus<QQ>,
35    q_mod_n: bigint::Elem<N, R>,
36    public: verification::Key,
37    public_key: RsaSubjectPublicKey,
38}
39
40derive_debug_via_field!(RsaKeyPair, stringify!(RsaKeyPair), public_key);
41
42impl RsaKeyPair {
43    /// Parses an unencrypted PKCS#8-encoded RSA private key.
44    ///
45    /// Only two-prime (not multi-prime) keys are supported. The public modulus
46    /// (n) must be at least 2047 bits. The public modulus must be no larger
47    /// than 4096 bits. It is recommended that the public modulus be exactly
48    /// 2048 or 3072 bits. The public exponent must be at least 65537.
49    ///
50    /// This will generate a 2048-bit RSA private key of the correct form using
51    /// OpenSSL's command line tool:
52    ///
53    /// ```sh
54    ///    openssl genpkey -algorithm RSA \
55    ///        -pkeyopt rsa_keygen_bits:2048 \
56    ///        -pkeyopt rsa_keygen_pubexp:65537 | \
57    ///      openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8
58    /// ```
59    ///
60    /// This will generate a 3072-bit RSA private key of the correct form:
61    ///
62    /// ```sh
63    ///    openssl genpkey -algorithm RSA \
64    ///        -pkeyopt rsa_keygen_bits:3072 \
65    ///        -pkeyopt rsa_keygen_pubexp:65537 | \
66    ///      openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8
67    /// ```
68    ///
69    /// Often, keys generated for use in OpenSSL-based software are stored in
70    /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be
71    /// converted to binary PKCS#8 form using the OpenSSL command line tool like
72    /// this:
73    ///
74    /// ```sh
75    /// openssl pkcs8 -topk8 -nocrypt -outform der \
76    ///     -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
77    /// ```
78    ///
79    /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8
80    /// form like this:
81    ///
82    /// ```sh
83    /// openssl pkcs8 -nocrypt -outform der \
84    ///     -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
85    /// ```
86    ///
87    /// The private key is validated according to [NIST SP-800-56B rev. 1]
88    /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown),
89    /// with the following exceptions:
90    ///
91    /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an
92    ///   expected modulus length is provided as a parameter, so checks
93    ///   regarding these expectations are not done.
94    /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the
95    ///   expected modulus length is provided as a parameter, the consistency
96    ///   check between these values and the private key's value of n isn't
97    ///   done.
98    /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for
99    ///   performance reasons and to avoid any side channels that such tests
100    ///   would provide.
101    /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7:
102    ///     * *ring* has a slightly looser lower bound for the values of `p`
103    ///     and `q` than what the NIST document specifies. This looser lower
104    ///     bound matches what most other crypto libraries do. The check might
105    ///     be tightened to meet NIST's requirements in the future. Similarly,
106    ///     the check that `p` and `q` are not too close together is skipped
107    ///     currently, but may be added in the future.
108    ///     - The validity of the mathematical relationship of `dP`, `dQ`, `e`
109    ///     and `n` is verified only during signing. Some size checks of `d`,
110    ///     `dP` and `dQ` are performed at construction, but some NIST checks
111    ///     are skipped because they would be expensive and/or they would leak
112    ///     information through side channels. If a preemptive check of the
113    ///     consistency of `dP`, `dQ`, `e` and `n` with each other is
114    ///     necessary, that can be done by signing any message with the key
115    ///     pair.
116    ///
117    ///     * `d` is not fully validated, neither at construction nor during
118    ///     signing. This is OK as far as *ring*'s usage of the key is
119    ///     concerned because *ring* never uses the value of `d` (*ring* always
120    ///     uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem,
121    ///     instead). However, *ring*'s checks would not be sufficient for
122    ///     validating a key pair for use by some other system; that other
123    ///     system must check the value of `d` itself if `d` is to be used.
124    ///
125    /// In addition to the NIST requirements, *ring* requires that `p > q` and
126    /// that `e` must be no more than 33 bits.
127    ///
128    /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the
129    /// encoding of the key.
130    ///
131    /// [NIST SP-800-56B rev. 1]:
132    ///     http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
133    ///
134    /// [RFC 3447 Appendix A.1.2]:
135    ///     https://tools.ietf.org/html/rfc3447#appendix-A.1.2
136    ///
137    /// [RFC 5958]:
138    ///     https://tools.ietf.org/html/rfc5958
139    pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> {
140        const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der");
141        let (der, _) = pkcs8::unwrap_key_(
142            untrusted::Input::from(&RSA_ENCRYPTION),
143            pkcs8::Version::V1Only,
144            untrusted::Input::from(pkcs8),
145        )?;
146        Self::from_der(der.as_slice_less_safe())
147    }
148
149    /// Parses an RSA private key that is not inside a PKCS#8 wrapper.
150    ///
151    /// The private key must be encoded as a binary DER-encoded ASN.1
152    /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other
153    /// respects, this is just like `from_pkcs8()`. See the documentation for
154    /// `from_pkcs8()` for more details.
155    ///
156    /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key)
157    /// instead.
158    ///
159    /// [RFC 3447 Appendix A.1.2]:
160    ///     https://tools.ietf.org/html/rfc3447#appendix-A.1.2
161    ///
162    /// [NIST SP-800-56B rev. 1]:
163    ///     http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
164    pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> {
165        untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| {
166            der::nested(
167                input,
168                der::Tag::Sequence,
169                error::KeyRejected::invalid_encoding(),
170                Self::from_der_reader,
171            )
172        })
173    }
174
175    fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> {
176        let version = der::small_nonnegative_integer(input)
177            .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
178        if version != 0 {
179            return Err(KeyRejected::version_not_supported());
180        }
181
182        fn positive_integer<'a>(
183            input: &mut untrusted::Reader<'a>,
184        ) -> Result<io::Positive<'a>, KeyRejected> {
185            der::positive_integer(input)
186                .map_err(|error::Unspecified| KeyRejected::invalid_encoding())
187        }
188
189        let n = positive_integer(input)?;
190        let e = positive_integer(input)?;
191        let d = positive_integer(input)?.big_endian_without_leading_zero_as_input();
192        let p = positive_integer(input)?.big_endian_without_leading_zero_as_input();
193        let q = positive_integer(input)?.big_endian_without_leading_zero_as_input();
194        let dP = positive_integer(input)?.big_endian_without_leading_zero_as_input();
195        let dQ = positive_integer(input)?.big_endian_without_leading_zero_as_input();
196        let qInv = positive_integer(input)?.big_endian_without_leading_zero_as_input();
197
198        let (p, p_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(p)
199            .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
200        let (q, q_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(q)
201            .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
202
203        // Our implementation of CRT-based modular exponentiation used requires
204        // that `p > q` so swap them if `p < q`. If swapped, `qInv` is
205        // recalculated below. `p != q` is verified implicitly below, e.g. when
206        // `q_mod_p` is constructed.
207        let ((p, p_bits, dP), (q, q_bits, dQ, qInv)) = match q.verify_less_than(&p) {
208            Ok(_) => ((p, p_bits, dP), (q, q_bits, dQ, Some(qInv))),
209            Err(error::Unspecified) => {
210                // TODO: verify `q` and `qInv` are inverses (mod p).
211                ((q, q_bits, dQ), (p, p_bits, dP, None))
212            }
213        };
214
215        // XXX: Some steps are done out of order, but the NIST steps are worded
216        // in such a way that it is clear that NIST intends for them to be done
217        // in order. TODO: Does this matter at all?
218
219        // 6.4.1.4.3/6.4.1.2.1 - Step 1.
220
221        // Step 1.a is omitted, as explained above.
222
223        // Step 1.b is omitted per above. Instead, we check that the public
224        // modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits.
225        // XXX: The maximum limit of 4096 bits is primarily due to lack of
226        // testing of larger key sizes; see, in particular,
227        // https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html
228        // and
229        // https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html.
230        // Also, this limit might help with memory management decisions later.
231
232        // Step 1.c. We validate e >= 65537.
233        let public_key = verification::Key::from_modulus_and_exponent(
234            n.big_endian_without_leading_zero_as_input(),
235            e.big_endian_without_leading_zero_as_input(),
236            bits::BitLength::from_usize_bits(2048),
237            super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS,
238            65537,
239        )?;
240
241        // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2.
242
243        // 6.4.1.4.3 Step 3.
244
245        // Step 3.a is done below, out of order.
246        // Step 3.b is unneeded since `n_bits` is derived here from `n`.
247
248        // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover
249        // the prime factors since they are already given.)
250
251        // 6.4.1.4.3 - Step 5.
252
253        // Steps 5.a and 5.b are omitted, as explained above.
254
255        // Step 5.c.
256        //
257        // TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`.
258        //
259        // Second, stop if `p > 2**(nBits/2) - 1`.
260        let half_n_bits = public_key.n_bits.half_rounded_up();
261        if p_bits != half_n_bits {
262            return Err(KeyRejected::inconsistent_components());
263        }
264
265        // TODO: Step 5.d: Verify GCD(p - 1, e) == 1.
266
267        // Steps 5.e and 5.f are omitted as explained above.
268
269        // Step 5.g.
270        //
271        // TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`.
272        //
273        // Second, stop if `q > 2**(nBits/2) - 1`.
274        if p_bits != q_bits {
275            return Err(KeyRejected::inconsistent_components());
276        }
277
278        // TODO: Step 5.h: Verify GCD(p - 1, e) == 1.
279
280        let q_mod_n_decoded = q
281            .to_elem(&public_key.n)
282            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
283
284        // TODO: Step 5.i
285        //
286        // 3.b is unneeded since `n_bits` is derived here from `n`.
287
288        // 6.4.1.4.3 - Step 3.a (out of order).
289        //
290        // Verify that p * q == n. We restrict ourselves to modular
291        // multiplication. We rely on the fact that we've verified
292        // 0 < q < p < n. We check that q and p are close to sqrt(n) and then
293        // assume that these preconditions are enough to let us assume that
294        // checking p * q == 0 (mod n) is equivalent to checking p * q == n.
295        let q_mod_n = bigint::elem_mul(
296            public_key.n.oneRR().as_ref(),
297            q_mod_n_decoded.clone(),
298            &public_key.n,
299        );
300        let p_mod_n = p
301            .to_elem(&public_key.n)
302            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
303        let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, &public_key.n);
304        if !pq_mod_n.is_zero() {
305            return Err(KeyRejected::inconsistent_components());
306        }
307
308        // 6.4.1.4.3/6.4.1.2.1 - Step 6.
309
310        // Step 6.a, partial.
311        //
312        // First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit
313        // length of half_n_bits + 1, this check gives us 2**half_n_bits <= d,
314        // and knowing d is odd makes the inequality strict.
315        let (d, d_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(d)
316            .map_err(|_| error::KeyRejected::invalid_encoding())?;
317        if !(half_n_bits < d_bits) {
318            return Err(KeyRejected::inconsistent_components());
319        }
320        // XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have
321        // a good way of calculating LCM, so it is omitted, as explained above.
322        d.verify_less_than_modulus(&public_key.n)
323            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
324        if !d.is_odd() {
325            return Err(KeyRejected::invalid_component());
326        }
327
328        // Step 6.b is omitted as explained above.
329
330        // 6.4.1.4.3 - Step 7.
331
332        // Step 7.a.
333        let p = PrivatePrime::new(p, dP)?;
334
335        // Step 7.b.
336        let q = PrivatePrime::new(q, dQ)?;
337
338        let q_mod_p = q.modulus.to_elem(&p.modulus);
339
340        // Step 7.c.
341        let qInv = if let Some(qInv) = qInv {
342            bigint::Elem::from_be_bytes_padded(qInv, &p.modulus)
343                .map_err(|error::Unspecified| KeyRejected::invalid_component())?
344        } else {
345            // We swapped `p` and `q` above, so we need to calculate `qInv`.
346            // Step 7.f below will verify `qInv` is correct.
347            let q_mod_p = bigint::elem_mul(p.modulus.oneRR().as_ref(), q_mod_p.clone(), &p.modulus);
348            bigint::elem_inverse_consttime(q_mod_p, &p.modulus)
349                .map_err(|error::Unspecified| KeyRejected::unexpected_error())?
350        };
351
352        // Steps 7.d and 7.e are omitted per the documentation above, and
353        // because we don't (in the long term) have a good way to do modulo
354        // with an even modulus.
355
356        // Step 7.f.
357        let qInv = bigint::elem_mul(p.modulus.oneRR().as_ref(), qInv, &p.modulus);
358        bigint::verify_inverses_consttime(&qInv, q_mod_p, &p.modulus)
359            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
360
361        let qq = bigint::elem_mul(&q_mod_n, q_mod_n_decoded, &public_key.n).into_modulus::<QQ>()?;
362
363        let public_key_serialized = RsaSubjectPublicKey::from_n_and_e(n, e);
364
365        Ok(Self {
366            p,
367            q,
368            qInv,
369            q_mod_n,
370            qq,
371            public: public_key,
372            public_key: public_key_serialized,
373        })
374    }
375
376    /// Returns the length in bytes of the key pair's public modulus.
377    ///
378    /// A signature has the same length as the public modulus.
379    pub fn public_modulus_len(&self) -> usize {
380        self.public_key
381            .modulus()
382            .big_endian_without_leading_zero_as_input()
383            .as_slice_less_safe()
384            .len()
385    }
386}
387
388impl signature::KeyPair for RsaKeyPair {
389    type PublicKey = RsaSubjectPublicKey;
390
391    fn public_key(&self) -> &Self::PublicKey {
392        &self.public_key
393    }
394}
395
396/// A serialized RSA public key.
397#[derive(Clone)]
398pub struct RsaSubjectPublicKey(Box<[u8]>);
399
400impl AsRef<[u8]> for RsaSubjectPublicKey {
401    fn as_ref(&self) -> &[u8] {
402        self.0.as_ref()
403    }
404}
405
406derive_debug_self_as_ref_hex_bytes!(RsaSubjectPublicKey);
407
408impl RsaSubjectPublicKey {
409    fn from_n_and_e(n: io::Positive, e: io::Positive) -> Self {
410        let bytes = der_writer::write_all(der::Tag::Sequence, &|output| {
411            der_writer::write_positive_integer(output, &n);
412            der_writer::write_positive_integer(output, &e);
413        });
414        RsaSubjectPublicKey(bytes)
415    }
416
417    /// The public modulus (n).
418    pub fn modulus(&self) -> io::Positive {
419        // Parsing won't fail because we serialized it ourselves.
420        let (public_key, _exponent) =
421            super::parse_public_key(untrusted::Input::from(self.as_ref())).unwrap();
422        public_key
423    }
424
425    /// The public exponent (e).
426    pub fn exponent(&self) -> io::Positive {
427        // Parsing won't fail because we serialized it ourselves.
428        let (_public_key, exponent) =
429            super::parse_public_key(untrusted::Input::from(self.as_ref())).unwrap();
430        exponent
431    }
432}
433
434struct PrivatePrime<M: Prime> {
435    modulus: bigint::Modulus<M>,
436    exponent: bigint::PrivateExponent<M>,
437}
438
439impl<M: Prime + Clone> PrivatePrime<M> {
440    /// Constructs a `PrivatePrime` from the private prime `p` and `dP` where
441    /// dP == d % (p - 1).
442    fn new(p: bigint::Nonnegative, dP: untrusted::Input) -> Result<Self, KeyRejected> {
443        let (p, p_bits) = bigint::Modulus::from_nonnegative_with_bit_length(p)?;
444        if p_bits.as_usize_bits() % 512 != 0 {
445            return Err(error::KeyRejected::private_modulus_len_not_multiple_of_512_bits());
446        }
447
448        // [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b.
449        let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, &p)
450            .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
451
452        // XXX: Steps 7.d and 7.e are omitted. We don't check that
453        // `dP == d % (p - 1)` because we don't (in the long term) have a good
454        // way to do modulo with an even modulus. Instead we just check that
455        // `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we
456        // do the private key operation, since we verify that the result of the
457        // private key operation using the CRT parameters is consistent with `n`
458        // and `e`. TODO: Either prove that what we do is sufficient, or make
459        // it so.
460
461        Ok(PrivatePrime {
462            modulus: p,
463            exponent: dP,
464        })
465    }
466}
467
468fn elem_exp_consttime<M, MM>(
469    c: &bigint::Elem<MM>,
470    p: &PrivatePrime<M>,
471) -> Result<bigint::Elem<M>, error::Unspecified>
472where
473    M: bigint::NotMuchSmallerModulus<MM>,
474    M: Prime,
475{
476    let c_mod_m = bigint::elem_reduced(c, &p.modulus);
477    // We could precompute `oneRRR = elem_squared(&p.oneRR`) as mentioned
478    // in the Smooth CRT-RSA paper.
479    let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus);
480    let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus);
481    bigint::elem_exp_consttime(c_mod_m, &p.exponent, &p.modulus)
482}
483
484// Type-level representations of the different moduli used in RSA signing, in
485// addition to `super::N`. See `super::bigint`'s modulue-level documentation.
486
487#[derive(Copy, Clone)]
488enum P {}
489unsafe impl Prime for P {}
490unsafe impl bigint::SmallerModulus<N> for P {}
491unsafe impl bigint::NotMuchSmallerModulus<N> for P {}
492
493#[derive(Copy, Clone)]
494enum QQ {}
495unsafe impl bigint::SmallerModulus<N> for QQ {}
496unsafe impl bigint::NotMuchSmallerModulus<N> for QQ {}
497
498// `q < p < 2*q` since `q` is slightly smaller than `p` (see below). Thus:
499//
500//                         q <  p  < 2*q
501//                       q*q < p*q < 2*q*q.
502//                      q**2 <  n  < 2*(q**2).
503unsafe impl bigint::SlightlySmallerModulus<N> for QQ {}
504
505#[derive(Copy, Clone)]
506enum Q {}
507unsafe impl Prime for Q {}
508unsafe impl bigint::SmallerModulus<N> for Q {}
509unsafe impl bigint::SmallerModulus<P> for Q {}
510
511// q < p && `p.bit_length() == q.bit_length()` implies `q < p < 2*q`.
512unsafe impl bigint::SlightlySmallerModulus<P> for Q {}
513
514unsafe impl bigint::SmallerModulus<QQ> for Q {}
515unsafe impl bigint::NotMuchSmallerModulus<QQ> for Q {}
516
517impl RsaKeyPair {
518    /// Sign `msg`. `msg` is digested using the digest algorithm from
519    /// `padding_alg` and the digest is then padded using the padding algorithm
520    /// from `padding_alg`. The signature it written into `signature`;
521    /// `signature`'s length must be exactly the length returned by
522    /// `public_modulus_len()`. `rng` may be used to randomize the padding
523    /// (e.g. for PSS).
524    ///
525    /// Many other crypto libraries have signing functions that takes a
526    /// precomputed digest as input, instead of the message to digest. This
527    /// function does *not* take a precomputed digest; instead, `sign`
528    /// calculates the digest itself.
529    ///
530    /// Lots of effort has been made to make the signing operations close to
531    /// constant time to protect the private key from side channel attacks. On
532    /// x86-64, this is done pretty well, but not perfectly. On other
533    /// platforms, it is done less perfectly.
534    pub fn sign(
535        &self,
536        padding_alg: &'static dyn RsaEncoding,
537        rng: &dyn rand::SecureRandom,
538        msg: &[u8],
539        signature: &mut [u8],
540    ) -> Result<(), error::Unspecified> {
541        let mod_bits = self.public.n_bits;
542        if signature.len() != mod_bits.as_usize_bytes_rounded_up() {
543            return Err(error::Unspecified);
544        }
545
546        let m_hash = digest::digest(padding_alg.digest_alg(), msg);
547        padding_alg.encode(&m_hash, signature, mod_bits, rng)?;
548
549        // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
550        // with Garner's algorithm.
551
552        let n = &self.public.n;
553
554        // Step 1. The value zero is also rejected.
555        let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(signature), n)?;
556
557        // Step 2
558        let c = base;
559
560        // Step 2.b.i.
561        let m_1 = elem_exp_consttime(&c, &self.p)?;
562        let c_mod_qq = bigint::elem_reduced_once(&c, &self.qq);
563        let m_2 = elem_exp_consttime(&c_mod_qq, &self.q)?;
564
565        // Step 2.b.ii isn't needed since there are only two primes.
566
567        // Step 2.b.iii.
568        let p = &self.p.modulus;
569        let m_2 = bigint::elem_widen(m_2, p);
570        let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p);
571        let h = bigint::elem_mul(&self.qInv, m_1_minus_m_2, p);
572
573        // Step 2.b.iv. The reduction in the modular multiplication isn't
574        // necessary because `h < p` and `p * q == n` implies `h * q < n`.
575        // Modular arithmetic is used simply to avoid implementing
576        // non-modular arithmetic.
577        let h = bigint::elem_widen(h, n);
578        let q_times_h = bigint::elem_mul(&self.q_mod_n, h, n);
579        let m_2 = bigint::elem_widen(m_2, n);
580        let m = bigint::elem_add(m_2, q_times_h, n);
581
582        // Step 2.b.v isn't needed since there are only two primes.
583
584        // Verify the result to protect against fault attacks as described
585        // in "On the Importance of Checking Cryptographic Protocols for
586        // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
587        // This check is cheap assuming `e` is small, which is ensured during
588        // `KeyPair` construction. Note that this is the only validation of `e`
589        // that is done other than basic checks on its size, oddness, and
590        // minimum value, since the relationship of `e` to `d`, `p`, and `q` is
591        // not verified during `KeyPair` construction.
592        {
593            let verify = bigint::elem_exp_vartime(m.clone(), self.public.e, n);
594            let verify = verify.into_unencoded(n);
595            bigint::elem_verify_equal_consttime(&verify, &c)?;
596        }
597
598        // Step 3.
599        //
600        // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
601        m.fill_be_bytes(signature);
602
603        Ok(())
604    }
605}
606
607#[cfg(test)]
608mod tests {
609    // We intentionally avoid `use super::*` so that we are sure to use only
610    // the public API; this ensures that enough of the API is public.
611    use crate::{rand, signature};
612    use alloc::vec;
613
614    // `KeyPair::sign` requires that the output buffer is the same length as
615    // the public key modulus. Test what happens when it isn't the same length.
616    #[test]
617    fn test_signature_rsa_pkcs1_sign_output_buffer_len() {
618        // Sign the message "hello, world", using PKCS#1 v1.5 padding and the
619        // SHA256 digest algorithm.
620        const MESSAGE: &[u8] = b"hello, world";
621        let rng = rand::SystemRandom::new();
622
623        const PRIVATE_KEY_DER: &[u8] = include_bytes!("signature_rsa_example_private_key.der");
624        let key_pair = signature::RsaKeyPair::from_der(PRIVATE_KEY_DER).unwrap();
625
626        // The output buffer is one byte too short.
627        let mut signature = vec![0; key_pair.public_modulus_len() - 1];
628
629        assert!(key_pair
630            .sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature)
631            .is_err());
632
633        // The output buffer is the right length.
634        signature.push(0);
635        assert!(key_pair
636            .sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature)
637            .is_ok());
638
639        // The output buffer is one byte too long.
640        signature.push(0);
641        assert!(key_pair
642            .sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature)
643            .is_err());
644    }
645}