ring/
pbkdf2.rs

1// Copyright 2015 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15//! PBKDF2 derivation and verification.
16//!
17//! Use `derive` to derive PBKDF2 outputs. Use `verify` to verify secret
18//! against previously-derived outputs.
19//!
20//! PBKDF2 is specified in [RFC 2898 Section 5.2] with test vectors given in
21//! [RFC 6070]. See also [NIST Special Publication 800-132].
22//!
23//! [RFC 2898 Section 5.2]: https://tools.ietf.org/html/rfc2898#section-5.2
24//! [RFC 6070]: https://tools.ietf.org/html/rfc6070
25//! [NIST Special Publication 800-132]:
26//!    http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
27//!
28//! # Examples
29//!
30//! ## Password Database Example
31//!
32//! ```
33//! use ring::{digest, pbkdf2};
34//! use std::{collections::HashMap, num::NonZeroU32};
35//!
36//! static PBKDF2_ALG: pbkdf2::Algorithm = pbkdf2::PBKDF2_HMAC_SHA256;
37//! const CREDENTIAL_LEN: usize = digest::SHA256_OUTPUT_LEN;
38//! pub type Credential = [u8; CREDENTIAL_LEN];
39//!
40//! enum Error {
41//!     WrongUsernameOrPassword
42//! }
43//!
44//! struct PasswordDatabase {
45//!     pbkdf2_iterations: NonZeroU32,
46//!     db_salt_component: [u8; 16],
47//!
48//!     // Normally this would be a persistent database.
49//!     storage: HashMap<String, Credential>,
50//! }
51//!
52//! impl PasswordDatabase {
53//!     pub fn store_password(&mut self, username: &str, password: &str) {
54//!         let salt = self.salt(username);
55//!         let mut to_store: Credential = [0u8; CREDENTIAL_LEN];
56//!         pbkdf2::derive(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
57//!                        password.as_bytes(), &mut to_store);
58//!         self.storage.insert(String::from(username), to_store);
59//!     }
60//!
61//!     pub fn verify_password(&self, username: &str, attempted_password: &str)
62//!                            -> Result<(), Error> {
63//!         match self.storage.get(username) {
64//!            Some(actual_password) => {
65//!                let salt = self.salt(username);
66//!                pbkdf2::verify(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
67//!                               attempted_password.as_bytes(),
68//!                               actual_password)
69//!                     .map_err(|_| Error::WrongUsernameOrPassword)
70//!            },
71//!
72//!            None => Err(Error::WrongUsernameOrPassword)
73//!         }
74//!     }
75//!
76//!     // The salt should have a user-specific component so that an attacker
77//!     // cannot crack one password for multiple users in the database. It
78//!     // should have a database-unique component so that an attacker cannot
79//!     // crack the same user's password across databases in the unfortunate
80//!     // but common case that the user has used the same password for
81//!     // multiple systems.
82//!     fn salt(&self, username: &str) -> Vec<u8> {
83//!         let mut salt = Vec::with_capacity(self.db_salt_component.len() +
84//!                                           username.as_bytes().len());
85//!         salt.extend(self.db_salt_component.as_ref());
86//!         salt.extend(username.as_bytes());
87//!         salt
88//!     }
89//! }
90//!
91//! fn main() {
92//!     // Normally these parameters would be loaded from a configuration file.
93//!     let mut db = PasswordDatabase {
94//!         pbkdf2_iterations: NonZeroU32::new(100_000).unwrap(),
95//!         db_salt_component: [
96//!             // This value was generated from a secure PRNG.
97//!             0xd6, 0x26, 0x98, 0xda, 0xf4, 0xdc, 0x50, 0x52,
98//!             0x24, 0xf2, 0x27, 0xd1, 0xfe, 0x39, 0x01, 0x8a
99//!         ],
100//!         storage: HashMap::new(),
101//!     };
102//!
103//!     db.store_password("alice", "@74d7]404j|W}6u");
104//!
105//!     // An attempt to log in with the wrong password fails.
106//!     assert!(db.verify_password("alice", "wrong password").is_err());
107//!
108//!     // Normally there should be an expoentially-increasing delay between
109//!     // attempts to further protect against online attacks.
110//!
111//!     // An attempt to log in with the right password succeeds.
112//!     assert!(db.verify_password("alice", "@74d7]404j|W}6u").is_ok());
113//! }
114
115use crate::{constant_time, digest, error, hmac, polyfill};
116use core::num::NonZeroU32;
117
118/// A PBKDF2 algorithm.
119#[derive(Clone, Copy, PartialEq, Eq)]
120pub struct Algorithm(hmac::Algorithm);
121
122/// PBKDF2 using HMAC-SHA1.
123pub static PBKDF2_HMAC_SHA1: Algorithm = Algorithm(hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY);
124
125/// PBKDF2 using HMAC-SHA256.
126pub static PBKDF2_HMAC_SHA256: Algorithm = Algorithm(hmac::HMAC_SHA256);
127
128/// PBKDF2 using HMAC-SHA384.
129pub static PBKDF2_HMAC_SHA384: Algorithm = Algorithm(hmac::HMAC_SHA384);
130
131/// PBKDF2 using HMAC-SHA512.
132pub static PBKDF2_HMAC_SHA512: Algorithm = Algorithm(hmac::HMAC_SHA512);
133
134/// Fills `out` with the key derived using PBKDF2 with the given inputs.
135///
136/// Do not use `derive` as part of verifying a secret; use `verify` instead, to
137/// minimize the effectiveness of timing attacks.
138///
139/// `out.len()` must be no larger than the digest length * (2**32 - 1), per the
140/// PBKDF2 specification.
141///
142/// | Parameter   | RFC 2898 Section 5.2 Term
143/// |-------------|-------------------------------------------
144/// | digest_alg  | PRF (HMAC with the given digest algorithm)
145/// | iterations  | c (iteration count)
146/// | salt        | S (salt)
147/// | secret      | P (password)
148/// | out         | dk (derived key)
149/// | out.len()   | dkLen (derived key length)
150///
151/// # Panics
152///
153/// `derive` panics if `out.len()` is larger than (2**32 - 1) * the digest
154/// algorithm's output length, per the PBKDF2 specification.
155pub fn derive(
156    algorithm: Algorithm,
157    iterations: NonZeroU32,
158    salt: &[u8],
159    secret: &[u8],
160    out: &mut [u8],
161) {
162    let digest_alg = algorithm.0.digest_algorithm();
163    let output_len = digest_alg.output_len;
164
165    // This implementation's performance is asymptotically optimal as described
166    // in https://jbp.io/2015/08/11/pbkdf2-performance-matters/. However, it
167    // hasn't been optimized to the same extent as fastpbkdf2. In particular,
168    // this implementation is probably doing a lot of unnecessary copying.
169
170    let secret = hmac::Key::new(algorithm.0, secret);
171
172    // Clear |out|.
173    polyfill::slice::fill(out, 0);
174
175    let mut idx: u32 = 0;
176
177    for chunk in out.chunks_mut(output_len) {
178        idx = idx.checked_add(1).expect("derived key too long");
179        derive_block(&secret, iterations, salt, idx, chunk);
180    }
181}
182
183fn derive_block(secret: &hmac::Key, iterations: NonZeroU32, salt: &[u8], idx: u32, out: &mut [u8]) {
184    let mut ctx = hmac::Context::with_key(secret);
185    ctx.update(salt);
186    ctx.update(&u32::to_be_bytes(idx));
187
188    let mut u = ctx.sign();
189
190    let mut remaining: u32 = iterations.into();
191    loop {
192        for i in 0..out.len() {
193            out[i] ^= u.as_ref()[i];
194        }
195
196        if remaining == 1 {
197            break;
198        }
199        remaining -= 1;
200
201        u = hmac::sign(secret, u.as_ref());
202    }
203}
204
205/// Verifies that a previously-derived (e.g., using `derive`) PBKDF2 value
206/// matches the PBKDF2 value derived from the other inputs.
207///
208/// The comparison is done in constant time to prevent timing attacks. The
209/// comparison will fail if `previously_derived` is empty (has a length of
210/// zero).
211///
212/// | Parameter                  | RFC 2898 Section 5.2 Term
213/// |----------------------------|--------------------------------------------
214/// | digest_alg                 | PRF (HMAC with the given digest algorithm).
215/// | `iterations`               | c (iteration count)
216/// | `salt`                     | S (salt)
217/// | `secret`                   | P (password)
218/// | `previously_derived`       | dk (derived key)
219/// | `previously_derived.len()` | dkLen (derived key length)
220///
221/// # Panics
222///
223/// `verify` panics if `out.len()` is larger than (2**32 - 1) * the digest
224/// algorithm's output length, per the PBKDF2 specification.
225pub fn verify(
226    algorithm: Algorithm,
227    iterations: NonZeroU32,
228    salt: &[u8],
229    secret: &[u8],
230    previously_derived: &[u8],
231) -> Result<(), error::Unspecified> {
232    let digest_alg = algorithm.0.digest_algorithm();
233
234    if previously_derived.is_empty() {
235        return Err(error::Unspecified);
236    }
237
238    let mut derived_buf = [0u8; digest::MAX_OUTPUT_LEN];
239
240    let output_len = digest_alg.output_len;
241    let secret = hmac::Key::new(algorithm.0, secret);
242    let mut idx: u32 = 0;
243
244    let mut matches = 1;
245
246    for previously_derived_chunk in previously_derived.chunks(output_len) {
247        idx = idx.checked_add(1).expect("derived key too long");
248
249        let derived_chunk = &mut derived_buf[..previously_derived_chunk.len()];
250        polyfill::slice::fill(derived_chunk, 0);
251
252        derive_block(&secret, iterations, salt, idx, derived_chunk);
253
254        // XXX: This isn't fully constant-time-safe. TODO: Fix that.
255        let current_block_matches =
256            if constant_time::verify_slices_are_equal(derived_chunk, previously_derived_chunk)
257                .is_ok()
258            {
259                1
260            } else {
261                0
262            };
263
264        matches &= current_block_matches;
265    }
266
267    if matches == 0 {
268        return Err(error::Unspecified);
269    }
270
271    Ok(())
272}