ring/hmac.rs
1// Copyright 2015-2016 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15//! HMAC is specified in [RFC 2104].
16//!
17//! After a `Key` is constructed, it can be used for multiple signing or
18//! verification operations. Separating the construction of the key from the
19//! rest of the HMAC operation allows the per-key precomputation to be done
20//! only once, instead of it being done in every HMAC operation.
21//!
22//! Frequently all the data to be signed in a message is available in a single
23//! contiguous piece. In that case, the module-level `sign` function can be
24//! used. Otherwise, if the input is in multiple parts, `Context` should be
25//! used.
26//!
27//! # Examples:
28//!
29//! ## Signing a value and verifying it wasn't tampered with
30//!
31//! ```
32//! use ring::{hmac, rand};
33//!
34//! let rng = rand::SystemRandom::new();
35//! let key = hmac::Key::generate(hmac::HMAC_SHA256, &rng)?;
36//!
37//! let msg = "hello, world";
38//!
39//! let tag = hmac::sign(&key, msg.as_bytes());
40//!
41//! // [We give access to the message to an untrusted party, and they give it
42//! // back to us. We need to verify they didn't tamper with it.]
43//!
44//! hmac::verify(&key, msg.as_bytes(), tag.as_ref())?;
45//!
46//! # Ok::<(), ring::error::Unspecified>(())
47//! ```
48//!
49//! ## Using the one-shot API:
50//!
51//! ```
52//! use ring::{digest, hmac, rand};
53//! use ring::rand::SecureRandom;
54//!
55//! let msg = "hello, world";
56//!
57//! // The sender generates a secure key value and signs the message with it.
58//! // Note that in a real protocol, a key agreement protocol would be used to
59//! // derive `key_value`.
60//! let rng = rand::SystemRandom::new();
61//! let key_value: [u8; digest::SHA256_OUTPUT_LEN] = rand::generate(&rng)?.expose();
62//!
63//! let s_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
64//! let tag = hmac::sign(&s_key, msg.as_bytes());
65//!
66//! // The receiver (somehow!) knows the key value, and uses it to verify the
67//! // integrity of the message.
68//! let v_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
69//! hmac::verify(&v_key, msg.as_bytes(), tag.as_ref())?;
70//!
71//! # Ok::<(), ring::error::Unspecified>(())
72//! ```
73//!
74//! ## Using the multi-part API:
75//! ```
76//! use ring::{digest, hmac, rand};
77//! use ring::rand::SecureRandom;
78//!
79//! let parts = ["hello", ", ", "world"];
80//!
81//! // The sender generates a secure key value and signs the message with it.
82//! // Note that in a real protocol, a key agreement protocol would be used to
83//! // derive `key_value`.
84//! let rng = rand::SystemRandom::new();
85//! let mut key_value: [u8; digest::SHA384_OUTPUT_LEN] = rand::generate(&rng)?.expose();
86//!
87//! let s_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
88//! let mut s_ctx = hmac::Context::with_key(&s_key);
89//! for part in &parts {
90//! s_ctx.update(part.as_bytes());
91//! }
92//! let tag = s_ctx.sign();
93//!
94//! // The receiver (somehow!) knows the key value, and uses it to verify the
95//! // integrity of the message.
96//! let v_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
97//! let mut msg = Vec::<u8>::new();
98//! for part in &parts {
99//! msg.extend(part.as_bytes());
100//! }
101//! hmac::verify(&v_key, &msg.as_ref(), tag.as_ref())?;
102//!
103//! # Ok::<(), ring::error::Unspecified>(())
104//! ```
105//!
106//! [RFC 2104]: https://tools.ietf.org/html/rfc2104
107//! [code for `ring::pbkdf2`]:
108//! https://github.com/briansmith/ring/blob/main/src/pbkdf2.rs
109//! [code for `ring::hkdf`]:
110//! https://github.com/briansmith/ring/blob/main/src/hkdf.rs
111
112use crate::{constant_time, digest, error, hkdf, rand};
113
114/// An HMAC algorithm.
115#[derive(Clone, Copy, Debug, PartialEq, Eq)]
116pub struct Algorithm(&'static digest::Algorithm);
117
118impl Algorithm {
119 /// The digest algorithm this HMAC algorithm is based on.
120 #[inline]
121 pub fn digest_algorithm(&self) -> &'static digest::Algorithm {
122 self.0
123 }
124}
125
126/// HMAC using SHA-1. Obsolete.
127pub static HMAC_SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm(&digest::SHA1_FOR_LEGACY_USE_ONLY);
128
129/// HMAC using SHA-256.
130pub static HMAC_SHA256: Algorithm = Algorithm(&digest::SHA256);
131
132/// HMAC using SHA-384.
133pub static HMAC_SHA384: Algorithm = Algorithm(&digest::SHA384);
134
135/// HMAC using SHA-512.
136pub static HMAC_SHA512: Algorithm = Algorithm(&digest::SHA512);
137
138/// A deprecated alias for `Tag`.
139#[deprecated(note = "`Signature` was renamed to `Tag`. This alias will be removed soon.")]
140pub type Signature = Tag;
141
142/// An HMAC tag.
143///
144/// For a given tag `t`, use `t.as_ref()` to get the tag value as a byte slice.
145#[derive(Clone, Copy, Debug)]
146pub struct Tag(digest::Digest);
147
148impl AsRef<[u8]> for Tag {
149 #[inline]
150 fn as_ref(&self) -> &[u8] {
151 self.0.as_ref()
152 }
153}
154
155/// A key to use for HMAC signing.
156#[derive(Clone)]
157pub struct Key {
158 inner: digest::BlockContext,
159 outer: digest::BlockContext,
160}
161
162/// `hmac::SigningKey` was renamed to `hmac::Key`.
163#[deprecated(note = "Renamed to `hmac::Key`.")]
164pub type SigningKey = Key;
165
166/// `hmac::VerificationKey` was merged into `hmac::Key`.
167#[deprecated(
168 note = "The distinction between verification & signing keys was removed. Use `hmac::Key`."
169)]
170pub type VerificationKey = Key;
171
172impl core::fmt::Debug for Key {
173 fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
174 f.debug_struct("Key")
175 .field("algorithm", self.algorithm().digest_algorithm())
176 .finish()
177 }
178}
179
180impl Key {
181 /// Generate an HMAC signing key using the given digest algorithm with a
182 /// random value generated from `rng`.
183 ///
184 /// The key will be `digest_alg.output_len` bytes long, based on the
185 /// recommendation in [RFC 2104 Section 3].
186 ///
187 /// [RFC 2104 Section 3]: https://tools.ietf.org/html/rfc2104#section-3
188 pub fn generate(
189 algorithm: Algorithm,
190 rng: &dyn rand::SecureRandom,
191 ) -> Result<Self, error::Unspecified> {
192 Self::construct(algorithm, |buf| rng.fill(buf))
193 }
194
195 fn construct<F>(algorithm: Algorithm, fill: F) -> Result<Self, error::Unspecified>
196 where
197 F: FnOnce(&mut [u8]) -> Result<(), error::Unspecified>,
198 {
199 let mut key_bytes = [0; digest::MAX_OUTPUT_LEN];
200 let key_bytes = &mut key_bytes[..algorithm.0.output_len];
201 fill(key_bytes)?;
202 Ok(Self::new(algorithm, key_bytes))
203 }
204
205 /// Construct an HMAC signing key using the given digest algorithm and key
206 /// value.
207 ///
208 /// `key_value` should be a value generated using a secure random number
209 /// generator (e.g. the `key_value` output by
210 /// `SealingKey::generate_serializable()`) or derived from a random key by
211 /// a key derivation function (e.g. `ring::hkdf`). In particular,
212 /// `key_value` shouldn't be a password.
213 ///
214 /// As specified in RFC 2104, if `key_value` is shorter than the digest
215 /// algorithm's block length (as returned by `digest::Algorithm::block_len`,
216 /// not the digest length returned by `digest::Algorithm::output_len`) then
217 /// it will be padded with zeros. Similarly, if it is longer than the block
218 /// length then it will be compressed using the digest algorithm.
219 ///
220 /// You should not use keys larger than the `digest_alg.block_len` because
221 /// the truncation described above reduces their strength to only
222 /// `digest_alg.output_len * 8` bits. Support for such keys is likely to be
223 /// removed in a future version of *ring*.
224 pub fn new(algorithm: Algorithm, key_value: &[u8]) -> Self {
225 let digest_alg = algorithm.0;
226 let mut key = Self {
227 inner: digest::BlockContext::new(digest_alg),
228 outer: digest::BlockContext::new(digest_alg),
229 };
230
231 let key_hash;
232 let key_value = if key_value.len() <= digest_alg.block_len {
233 key_value
234 } else {
235 key_hash = digest::digest(digest_alg, key_value);
236 key_hash.as_ref()
237 };
238
239 const IPAD: u8 = 0x36;
240
241 let mut padded_key = [IPAD; digest::MAX_BLOCK_LEN];
242 let padded_key = &mut padded_key[..digest_alg.block_len];
243
244 // If the key is shorter than one block then we're supposed to act like
245 // it is padded with zero bytes up to the block length. `x ^ 0 == x` so
246 // we can just leave the trailing bytes of `padded_key` untouched.
247 for (padded_key, key_value) in padded_key.iter_mut().zip(key_value.iter()) {
248 *padded_key ^= *key_value;
249 }
250 key.inner.update(&padded_key);
251
252 const OPAD: u8 = 0x5C;
253
254 // Remove the `IPAD` masking, leaving the unmasked padded key, then
255 // mask with `OPAD`, all in one step.
256 for b in padded_key.iter_mut() {
257 *b ^= IPAD ^ OPAD;
258 }
259 key.outer.update(&padded_key);
260
261 key
262 }
263
264 /// The digest algorithm for the key.
265 #[inline]
266 pub fn algorithm(&self) -> Algorithm {
267 Algorithm(self.inner.algorithm)
268 }
269}
270
271impl hkdf::KeyType for Algorithm {
272 fn len(&self) -> usize {
273 self.digest_algorithm().output_len
274 }
275}
276
277impl From<hkdf::Okm<'_, Algorithm>> for Key {
278 fn from(okm: hkdf::Okm<Algorithm>) -> Self {
279 Key::construct(*okm.len(), |buf| okm.fill(buf)).unwrap()
280 }
281}
282
283/// A context for multi-step (Init-Update-Finish) HMAC signing.
284///
285/// Use `sign` for single-step HMAC signing.
286#[derive(Clone)]
287pub struct Context {
288 inner: digest::Context,
289 outer: digest::BlockContext,
290}
291
292/// `hmac::SigningContext` was renamed to `hmac::Context`.
293#[deprecated(note = "Renamed to `hmac::Context`.")]
294pub type SigningContext = Context;
295
296impl core::fmt::Debug for Context {
297 fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
298 f.debug_struct("Context")
299 .field("algorithm", self.inner.algorithm())
300 .finish()
301 }
302}
303
304impl Context {
305 /// Constructs a new HMAC signing context using the given digest algorithm
306 /// and key.
307 pub fn with_key(signing_key: &Key) -> Self {
308 Self {
309 inner: digest::Context::clone_from(&signing_key.inner),
310 outer: signing_key.outer.clone(),
311 }
312 }
313
314 /// Updates the HMAC with all the data in `data`. `update` may be called
315 /// zero or more times until `finish` is called.
316 pub fn update(&mut self, data: &[u8]) {
317 self.inner.update(data);
318 }
319
320 /// Finalizes the HMAC calculation and returns the HMAC value. `sign`
321 /// consumes the context so it cannot be (mis-)used after `sign` has been
322 /// called.
323 ///
324 /// It is generally not safe to implement HMAC verification by comparing
325 /// the return value of `sign` to a tag. Use `verify` for verification
326 /// instead.
327 pub fn sign(self) -> Tag {
328 let algorithm = self.inner.algorithm();
329 let mut pending = [0u8; digest::MAX_BLOCK_LEN];
330 let pending = &mut pending[..algorithm.block_len];
331 let num_pending = algorithm.output_len;
332 pending[..num_pending].copy_from_slice(self.inner.finish().as_ref());
333 Tag(self.outer.finish(pending, num_pending))
334 }
335}
336
337/// Calculates the HMAC of `data` using the key `key` in one step.
338///
339/// Use `Context` to calculate HMACs where the input is in multiple parts.
340///
341/// It is generally not safe to implement HMAC verification by comparing the
342/// return value of `sign` to a tag. Use `verify` for verification instead.
343pub fn sign(key: &Key, data: &[u8]) -> Tag {
344 let mut ctx = Context::with_key(key);
345 ctx.update(data);
346 ctx.sign()
347}
348
349/// Calculates the HMAC of `data` using the signing key `key`, and verifies
350/// whether the resultant value equals `tag`, in one step.
351///
352/// This is logically equivalent to, but more efficient than, constructing a
353/// `Key` with the same value as `key` and then using `verify`.
354///
355/// The verification will be done in constant time to prevent timing attacks.
356pub fn verify(key: &Key, data: &[u8], tag: &[u8]) -> Result<(), error::Unspecified> {
357 constant_time::verify_slices_are_equal(sign(key, data).as_ref(), tag)
358}
359
360#[cfg(test)]
361mod tests {
362 use crate::{hmac, rand};
363
364 // Make sure that `Key::generate` and `verify_with_own_key` aren't
365 // completely wacky.
366 #[test]
367 pub fn hmac_signing_key_coverage() {
368 let rng = rand::SystemRandom::new();
369
370 const HELLO_WORLD_GOOD: &[u8] = b"hello, world";
371 const HELLO_WORLD_BAD: &[u8] = b"hello, worle";
372
373 for algorithm in &[
374 hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
375 hmac::HMAC_SHA256,
376 hmac::HMAC_SHA384,
377 hmac::HMAC_SHA512,
378 ] {
379 let key = hmac::Key::generate(*algorithm, &rng).unwrap();
380 let tag = hmac::sign(&key, HELLO_WORLD_GOOD);
381 assert!(hmac::verify(&key, HELLO_WORLD_GOOD, tag.as_ref()).is_ok());
382 assert!(hmac::verify(&key, HELLO_WORLD_BAD, tag.as_ref()).is_err())
383 }
384 }
385}