ring/ec/suite_b/
private_key.rs

1// Copyright 2016 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15//! Functionality shared by operations on private keys (ECC keygen and
16//! ECDSA signing).
17
18use super::{ops::*, verify_affine_point_is_on_the_curve};
19use crate::{
20    arithmetic::montgomery::R,
21    ec, error,
22    limb::{self, LIMB_BYTES},
23    rand,
24};
25
26/// Generates a random scalar in the range [1, n).
27pub fn random_scalar(
28    ops: &PrivateKeyOps,
29    rng: &dyn rand::SecureRandom,
30) -> Result<Scalar, error::Unspecified> {
31    let num_limbs = ops.common.num_limbs;
32    let mut bytes = [0; ec::SCALAR_MAX_BYTES];
33    let bytes = &mut bytes[..(num_limbs * LIMB_BYTES)];
34    generate_private_scalar_bytes(ops, rng, bytes)?;
35    scalar_from_big_endian_bytes(ops, bytes)
36}
37
38pub fn generate_private_scalar_bytes(
39    ops: &PrivateKeyOps,
40    rng: &dyn rand::SecureRandom,
41    out: &mut [u8],
42) -> Result<(), error::Unspecified> {
43    // [NSA Suite B Implementer's Guide to ECDSA] Appendix A.1.2, and
44    // [NSA Suite B Implementer's Guide to NIST SP 800-56A] Appendix B.2,
45    // "Key Pair Generation by Testing Candidates".
46    //
47    // [NSA Suite B Implementer's Guide to ECDSA]: doc/ecdsa.pdf.
48    // [NSA Suite B Implementer's Guide to NIST SP 800-56A]: doc/ecdh.pdf.
49
50    // TODO: The NSA guide also suggests, in appendix B.1, another mechanism
51    // that would avoid the need to use `rng.fill()` more than once. It works
52    // by generating an extra 64 bits of random bytes and then reducing the
53    // output (mod n). Supposedly, this removes enough of the bias towards
54    // small values from the modular reduction, but it isn't obvious that it is
55    // sufficient. TODO: Figure out what we can do to mitigate the bias issue
56    // and switch to the other mechanism.
57
58    let candidate = out;
59
60    // XXX: The value 100 was chosen to match OpenSSL due to uncertainty of
61    // what specific value would be better, but it seems bad to try 100 times.
62    for _ in 0..100 {
63        // NSA Guide Steps 1, 2, and 3.
64        //
65        // Since we calculate the length ourselves, it is pointless to check
66        // it, since we can only check it by doing the same calculation.
67
68        // NSA Guide Step 4.
69        //
70        // The requirement that the random number generator has the
71        // requested security strength is delegated to `rng`.
72        rng.fill(candidate)?;
73
74        // NSA Guide Steps 5, 6, and 7.
75        if check_scalar_big_endian_bytes(ops, candidate).is_err() {
76            continue;
77        }
78
79        // NSA Guide Step 8 is done in `public_from_private()`.
80
81        // NSA Guide Step 9.
82        return Ok(());
83    }
84
85    Err(error::Unspecified)
86}
87
88// The underlying X25519 and Ed25519 code uses an [u8; 32] to store the private
89// key. To make the ECDH and ECDSA code similar to that, we also store the
90// private key that way, which means we have to convert it to a Scalar whenever
91// we need to use it.
92#[inline]
93pub fn private_key_as_scalar(ops: &PrivateKeyOps, private_key: &ec::Seed) -> Scalar {
94    // This cannot fail because we know the private key is valid.
95    scalar_from_big_endian_bytes(ops, private_key.bytes_less_safe()).unwrap()
96}
97
98pub fn check_scalar_big_endian_bytes(
99    ops: &PrivateKeyOps,
100    bytes: &[u8],
101) -> Result<(), error::Unspecified> {
102    debug_assert_eq!(bytes.len(), ops.common.num_limbs * LIMB_BYTES);
103    scalar_from_big_endian_bytes(ops, bytes).map(|_| ())
104}
105
106// Parses a fixed-length (zero-padded) big-endian-encoded scalar in the range
107// [1, n). This is constant-time with respect to the actual value *only if* the
108// value is actually in range. In other words, this won't leak anything about a
109// valid value, but it might leak small amounts of information about an invalid
110// value (which constraint it failed).
111pub fn scalar_from_big_endian_bytes(
112    ops: &PrivateKeyOps,
113    bytes: &[u8],
114) -> Result<Scalar, error::Unspecified> {
115    // [NSA Suite B Implementer's Guide to ECDSA] Appendix A.1.2, and
116    // [NSA Suite B Implementer's Guide to NIST SP 800-56A] Appendix B.2,
117    // "Key Pair Generation by Testing Candidates".
118    //
119    // [NSA Suite B Implementer's Guide to ECDSA]: doc/ecdsa.pdf.
120    // [NSA Suite B Implementer's Guide to NIST SP 800-56A]: doc/ecdh.pdf.
121    //
122    // Steps 5, 6, and 7.
123    //
124    // XXX: The NSA guide says that we should verify that the random scalar is
125    // in the range [0, n - 1) and then add one to it so that it is in the range
126    // [1, n). Instead, we verify that the scalar is in the range [1, n). This
127    // way, we avoid needing to compute or store the value (n - 1), we avoid the
128    // need to implement a function to add one to a scalar, and we avoid needing
129    // to convert the scalar back into an array of bytes.
130    scalar_parse_big_endian_fixed_consttime(ops.common, untrusted::Input::from(bytes))
131}
132
133pub fn public_from_private(
134    ops: &PrivateKeyOps,
135    public_out: &mut [u8],
136    my_private_key: &ec::Seed,
137) -> Result<(), error::Unspecified> {
138    let elem_and_scalar_bytes = ops.common.num_limbs * LIMB_BYTES;
139    debug_assert_eq!(public_out.len(), 1 + (2 * elem_and_scalar_bytes));
140    let my_private_key = private_key_as_scalar(ops, my_private_key);
141    let my_public_key = ops.point_mul_base(&my_private_key);
142    public_out[0] = 4; // Uncompressed encoding.
143    let (x_out, y_out) = (&mut public_out[1..]).split_at_mut(elem_and_scalar_bytes);
144
145    // `big_endian_affine_from_jacobian` verifies that the point is not at
146    // infinity and is on the curve.
147    big_endian_affine_from_jacobian(ops, Some(x_out), Some(y_out), &my_public_key)
148}
149
150pub fn affine_from_jacobian(
151    ops: &PrivateKeyOps,
152    p: &Point,
153) -> Result<(Elem<R>, Elem<R>), error::Unspecified> {
154    let z = ops.common.point_z(p);
155
156    // Since we restrict our private key to the range [1, n), the curve has
157    // prime order, and we verify that the peer's point is on the curve,
158    // there's no way that the result can be at infinity. But, use `assert!`
159    // instead of `debug_assert!` anyway
160    assert!(ops.common.elem_verify_is_not_zero(&z).is_ok());
161
162    let x = ops.common.point_x(p);
163    let y = ops.common.point_y(p);
164
165    let zz_inv = ops.elem_inverse_squared(&z);
166
167    let x_aff = ops.common.elem_product(&x, &zz_inv);
168
169    // `y_aff` is needed to validate the point is on the curve. It is also
170    // needed in the non-ECDH case where we need to output it.
171    let y_aff = {
172        let zzzz_inv = ops.common.elem_squared(&zz_inv);
173        let zzz_inv = ops.common.elem_product(&z, &zzzz_inv);
174        ops.common.elem_product(&y, &zzz_inv)
175    };
176
177    // If we validated our inputs correctly and then computed (x, y, z), then
178    // (x, y, z) will be on the curve. See
179    // `verify_affine_point_is_on_the_curve_scaled` for the motivation.
180    verify_affine_point_is_on_the_curve(ops.common, (&x_aff, &y_aff))?;
181
182    Ok((x_aff, y_aff))
183}
184
185pub fn big_endian_affine_from_jacobian(
186    ops: &PrivateKeyOps,
187    x_out: Option<&mut [u8]>,
188    y_out: Option<&mut [u8]>,
189    p: &Point,
190) -> Result<(), error::Unspecified> {
191    let (x_aff, y_aff) = affine_from_jacobian(ops, p)?;
192    let num_limbs = ops.common.num_limbs;
193    if let Some(x_out) = x_out {
194        let x = ops.common.elem_unencoded(&x_aff);
195        limb::big_endian_from_limbs(&x.limbs[..num_limbs], x_out);
196    }
197    if let Some(y_out) = y_out {
198        let y = ops.common.elem_unencoded(&y_aff);
199        limb::big_endian_from_limbs(&y.limbs[..num_limbs], y_out);
200    }
201
202    Ok(())
203}