ring/ec/suite_b/ecdsa/
signing.rs

1// Copyright 2015-2016 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15//! ECDSA Signatures using the P-256 and P-384 curves.
16
17use super::digest_scalar::digest_scalar;
18use crate::{
19    arithmetic::montgomery::*,
20    cpu, digest,
21    ec::{
22        self,
23        suite_b::{ops::*, private_key},
24    },
25    error,
26    io::der,
27    limb, pkcs8, rand, sealed, signature,
28};
29/// An ECDSA signing algorithm.
30pub struct EcdsaSigningAlgorithm {
31    curve: &'static ec::Curve,
32    private_scalar_ops: &'static PrivateScalarOps,
33    private_key_ops: &'static PrivateKeyOps,
34    digest_alg: &'static digest::Algorithm,
35    pkcs8_template: &'static pkcs8::Template,
36    format_rs: fn(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize,
37    id: AlgorithmID,
38}
39
40#[derive(Debug, Eq, PartialEq)]
41enum AlgorithmID {
42    ECDSA_P256_SHA256_FIXED_SIGNING,
43    ECDSA_P384_SHA384_FIXED_SIGNING,
44    ECDSA_P256_SHA256_ASN1_SIGNING,
45    ECDSA_P384_SHA384_ASN1_SIGNING,
46}
47
48derive_debug_via_id!(EcdsaSigningAlgorithm);
49
50impl PartialEq for EcdsaSigningAlgorithm {
51    fn eq(&self, other: &Self) -> bool {
52        self.id == other.id
53    }
54}
55
56impl Eq for EcdsaSigningAlgorithm {}
57
58impl sealed::Sealed for EcdsaSigningAlgorithm {}
59
60/// An ECDSA key pair, used for signing.
61pub struct EcdsaKeyPair {
62    d: Scalar<R>,
63    nonce_key: NonceRandomKey,
64    alg: &'static EcdsaSigningAlgorithm,
65    public_key: PublicKey,
66}
67
68derive_debug_via_field!(EcdsaKeyPair, stringify!(EcdsaKeyPair), public_key);
69
70impl EcdsaKeyPair {
71    /// Generates a new key pair and returns the key pair serialized as a
72    /// PKCS#8 document.
73    ///
74    /// The PKCS#8 document will be a v1 `OneAsymmetricKey` with the public key
75    /// included in the `ECPrivateKey` structure, as described in
76    /// [RFC 5958 Section 2] and [RFC 5915]. The `ECPrivateKey` structure will
77    /// not have a `parameters` field so the generated key is compatible with
78    /// PKCS#11.
79    ///
80    /// [RFC 5915]: https://tools.ietf.org/html/rfc5915
81    /// [RFC 5958 Section 2]: https://tools.ietf.org/html/rfc5958#section-2
82    pub fn generate_pkcs8(
83        alg: &'static EcdsaSigningAlgorithm,
84        rng: &dyn rand::SecureRandom,
85    ) -> Result<pkcs8::Document, error::Unspecified> {
86        let private_key = ec::Seed::generate(alg.curve, rng, cpu::features())?;
87        let public_key = private_key.compute_public_key()?;
88        Ok(pkcs8::wrap_key(
89            &alg.pkcs8_template,
90            private_key.bytes_less_safe(),
91            public_key.as_ref(),
92        ))
93    }
94
95    /// Constructs an ECDSA key pair by parsing an unencrypted PKCS#8 v1
96    /// id-ecPublicKey `ECPrivateKey` key.
97    ///
98    /// The input must be in PKCS#8 v1 format. It must contain the public key in
99    /// the `ECPrivateKey` structure; `from_pkcs8()` will verify that the public
100    /// key and the private key are consistent with each other. The algorithm
101    /// identifier must identify the curve by name; it must not use an
102    /// "explicit" encoding of the curve. The `parameters` field of the
103    /// `ECPrivateKey`, if present, must be the same named curve that is in the
104    /// algorithm identifier in the PKCS#8 header.
105    pub fn from_pkcs8(
106        alg: &'static EcdsaSigningAlgorithm,
107        pkcs8: &[u8],
108    ) -> Result<Self, error::KeyRejected> {
109        let key_pair = ec::suite_b::key_pair_from_pkcs8(
110            alg.curve,
111            alg.pkcs8_template,
112            untrusted::Input::from(pkcs8),
113            cpu::features(),
114        )?;
115        let rng = rand::SystemRandom::new(); // TODO: make this a parameter.
116        Self::new(alg, key_pair, &rng)
117    }
118
119    /// Constructs an ECDSA key pair from the private key and public key bytes
120    ///
121    /// The private key must encoded as a big-endian fixed-length integer. For
122    /// example, a P-256 private key must be 32 bytes prefixed with leading
123    /// zeros as needed.
124    ///
125    /// The public key is encoding in uncompressed form using the
126    /// Octet-String-to-Elliptic-Curve-Point algorithm in
127    /// [SEC 1: Elliptic Curve Cryptography, Version 2.0].
128    ///
129    /// This is intended for use by code that deserializes key pairs. It is
130    /// recommended to use `EcdsaKeyPair::from_pkcs8()` (with a PKCS#8-encoded
131    /// key) instead.
132    ///
133    /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]:
134    ///     http://www.secg.org/sec1-v2.pdf
135    pub fn from_private_key_and_public_key(
136        alg: &'static EcdsaSigningAlgorithm,
137        private_key: &[u8],
138        public_key: &[u8],
139    ) -> Result<Self, error::KeyRejected> {
140        let key_pair = ec::suite_b::key_pair_from_bytes(
141            alg.curve,
142            untrusted::Input::from(private_key),
143            untrusted::Input::from(public_key),
144            cpu::features(),
145        )?;
146        let rng = rand::SystemRandom::new(); // TODO: make this a parameter.
147        Self::new(alg, key_pair, &rng)
148    }
149
150    fn new(
151        alg: &'static EcdsaSigningAlgorithm,
152        key_pair: ec::KeyPair,
153        rng: &dyn rand::SecureRandom,
154    ) -> Result<Self, error::KeyRejected> {
155        let (seed, public_key) = key_pair.split();
156        let d = private_key::private_key_as_scalar(alg.private_key_ops, &seed);
157        let d = alg
158            .private_scalar_ops
159            .scalar_ops
160            .scalar_product(&d, &alg.private_scalar_ops.oneRR_mod_n);
161
162        let nonce_key = NonceRandomKey::new(alg, &seed, rng)?;
163        Ok(Self {
164            d,
165            nonce_key,
166            alg,
167            public_key: PublicKey(public_key),
168        })
169    }
170
171    /// Deprecated. Returns the signature of the `message` using a random nonce
172    /// generated by `rng`.
173    pub fn sign(
174        &self,
175        rng: &dyn rand::SecureRandom,
176        message: &[u8],
177    ) -> Result<signature::Signature, error::Unspecified> {
178        // Step 4 (out of order).
179        let h = digest::digest(self.alg.digest_alg, message);
180
181        // Incorporate `h` into the nonce to hedge against faulty RNGs. (This
182        // is not an approved random number generator that is mandated in
183        // the spec.)
184        let nonce_rng = NonceRandom {
185            key: &self.nonce_key,
186            message_digest: &h,
187            rng,
188        };
189
190        self.sign_digest(h, &nonce_rng)
191    }
192
193    #[cfg(test)]
194    fn sign_with_fixed_nonce_during_test(
195        &self,
196        rng: &dyn rand::SecureRandom,
197        message: &[u8],
198    ) -> Result<signature::Signature, error::Unspecified> {
199        // Step 4 (out of order).
200        let h = digest::digest(self.alg.digest_alg, message);
201
202        self.sign_digest(h, rng)
203    }
204
205    /// Returns the signature of message digest `h` using a "random" nonce
206    /// generated by `rng`.
207    fn sign_digest(
208        &self,
209        h: digest::Digest,
210        rng: &dyn rand::SecureRandom,
211    ) -> Result<signature::Signature, error::Unspecified> {
212        // NSA Suite B Implementer's Guide to ECDSA Section 3.4.1: ECDSA
213        // Signature Generation.
214
215        // NSA Guide Prerequisites:
216        //
217        //     Prior to generating an ECDSA signature, the signatory shall
218        //     obtain:
219        //
220        //     1. an authentic copy of the domain parameters,
221        //     2. a digital signature key pair (d,Q), either generated by a
222        //        method from Appendix A.1, or obtained from a trusted third
223        //        party,
224        //     3. assurance of the validity of the public key Q (see Appendix
225        //        A.3), and
226        //     4. assurance that he/she/it actually possesses the associated
227        //        private key d (see [SP800-89] Section 6).
228        //
229        // The domain parameters are hard-coded into the source code.
230        // `EcdsaKeyPair::generate_pkcs8()` can be used to meet the second
231        // requirement; otherwise, it is up to the user to ensure the key pair
232        // was obtained from a trusted private key. The constructors for
233        // `EcdsaKeyPair` ensure that #3 and #4 are met subject to the caveats
234        // in SP800-89 Section 6.
235
236        let ops = self.alg.private_scalar_ops;
237        let scalar_ops = ops.scalar_ops;
238        let cops = scalar_ops.common;
239        let private_key_ops = self.alg.private_key_ops;
240
241        for _ in 0..100 {
242            // XXX: iteration conut?
243            // Step 1.
244            let k = private_key::random_scalar(self.alg.private_key_ops, rng)?;
245            let k_inv = scalar_ops.scalar_inv_to_mont(&k);
246
247            // Step 2.
248            let r = private_key_ops.point_mul_base(&k);
249
250            // Step 3.
251            let r = {
252                let (x, _) = private_key::affine_from_jacobian(private_key_ops, &r)?;
253                let x = cops.elem_unencoded(&x);
254                elem_reduced_to_scalar(cops, &x)
255            };
256            if cops.is_zero(&r) {
257                continue;
258            }
259
260            // Step 4 is done by the caller.
261
262            // Step 5.
263            let e = digest_scalar(scalar_ops, h);
264
265            // Step 6.
266            let s = {
267                let dr = scalar_ops.scalar_product(&self.d, &r);
268                let e_plus_dr = scalar_sum(cops, &e, &dr);
269                scalar_ops.scalar_product(&k_inv, &e_plus_dr)
270            };
271            if cops.is_zero(&s) {
272                continue;
273            }
274
275            // Step 7 with encoding.
276            return Ok(signature::Signature::new(|sig_bytes| {
277                (self.alg.format_rs)(scalar_ops, &r, &s, sig_bytes)
278            }));
279        }
280
281        Err(error::Unspecified)
282    }
283}
284
285/// Generates an ECDSA nonce in a way that attempts to protect against a faulty
286/// `SecureRandom`.
287struct NonceRandom<'a> {
288    key: &'a NonceRandomKey,
289    message_digest: &'a digest::Digest,
290    rng: &'a dyn rand::SecureRandom,
291}
292
293impl core::fmt::Debug for NonceRandom<'_> {
294    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
295        f.debug_struct("NonceRandom").finish()
296    }
297}
298
299impl rand::sealed::SecureRandom for NonceRandom<'_> {
300    fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
301        // Use the same digest algorithm that will be used to digest the
302        // message. The digest algorithm's output is exactly the right size;
303        // this is checked below.
304        //
305        // XXX(perf): The single iteration will require two digest block
306        // operations because the amount of data digested is larger than one
307        // block.
308        let digest_alg = self.key.0.algorithm();
309        let mut ctx = digest::Context::new(digest_alg);
310
311        // Digest the randomized digest of the private key.
312        let key = self.key.0.as_ref();
313        ctx.update(key);
314
315        // The random value is digested between the key and the message so that
316        // the key and the message are not directly digested in the same digest
317        // block.
318        assert!(key.len() <= digest_alg.block_len / 2);
319        {
320            let mut rand = [0u8; digest::MAX_BLOCK_LEN];
321            let rand = &mut rand[..digest_alg.block_len - key.len()];
322            assert!(rand.len() >= dest.len());
323            self.rng.fill(rand)?;
324            ctx.update(rand);
325        }
326
327        ctx.update(self.message_digest.as_ref());
328
329        let nonce = ctx.finish();
330
331        // `copy_from_slice()` panics if the lengths differ, so we don't have
332        // to separately assert that the lengths are the same.
333        dest.copy_from_slice(nonce.as_ref());
334
335        Ok(())
336    }
337}
338
339impl<'a> sealed::Sealed for NonceRandom<'a> {}
340
341struct NonceRandomKey(digest::Digest);
342
343impl NonceRandomKey {
344    fn new(
345        alg: &EcdsaSigningAlgorithm,
346        seed: &ec::Seed,
347        rng: &dyn rand::SecureRandom,
348    ) -> Result<Self, error::KeyRejected> {
349        let mut rand = [0; digest::MAX_OUTPUT_LEN];
350        let rand = &mut rand[0..alg.curve.elem_scalar_seed_len];
351
352        // XXX: `KeyRejected` isn't the right way to model  failure of the RNG,
353        // but to fix that we'd need to break the API by changing the result type.
354        // TODO: Fix the API in the next breaking release.
355        rng.fill(rand)
356            .map_err(|error::Unspecified| error::KeyRejected::rng_failed())?;
357
358        let mut ctx = digest::Context::new(alg.digest_alg);
359        ctx.update(rand);
360        ctx.update(seed.bytes_less_safe());
361        Ok(NonceRandomKey(ctx.finish()))
362    }
363}
364
365impl signature::KeyPair for EcdsaKeyPair {
366    type PublicKey = PublicKey;
367
368    fn public_key(&self) -> &Self::PublicKey {
369        &self.public_key
370    }
371}
372
373#[derive(Clone, Copy)]
374pub struct PublicKey(ec::PublicKey);
375
376derive_debug_self_as_ref_hex_bytes!(PublicKey);
377
378impl AsRef<[u8]> for PublicKey {
379    fn as_ref(&self) -> &[u8] {
380        self.0.as_ref()
381    }
382}
383
384fn format_rs_fixed(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize {
385    let scalar_len = ops.scalar_bytes_len();
386
387    let (r_out, rest) = out.split_at_mut(scalar_len);
388    limb::big_endian_from_limbs(&r.limbs[..ops.common.num_limbs], r_out);
389
390    let (s_out, _) = rest.split_at_mut(scalar_len);
391    limb::big_endian_from_limbs(&s.limbs[..ops.common.num_limbs], s_out);
392
393    2 * scalar_len
394}
395
396fn format_rs_asn1(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize {
397    // This assumes `a` is not zero since neither `r` or `s` is allowed to be
398    // zero.
399    fn format_integer_tlv(ops: &ScalarOps, a: &Scalar, out: &mut [u8]) -> usize {
400        let mut fixed = [0u8; ec::SCALAR_MAX_BYTES + 1];
401        let fixed = &mut fixed[..(ops.scalar_bytes_len() + 1)];
402        limb::big_endian_from_limbs(&a.limbs[..ops.common.num_limbs], &mut fixed[1..]);
403
404        // Since `a_fixed_out` is an extra byte long, it is guaranteed to start
405        // with a zero.
406        debug_assert_eq!(fixed[0], 0);
407
408        // There must be at least one non-zero byte since `a` isn't zero.
409        let first_index = fixed.iter().position(|b| *b != 0).unwrap();
410
411        // If the first byte has its high bit set, it needs to be prefixed with 0x00.
412        let first_index = if fixed[first_index] & 0x80 != 0 {
413            first_index - 1
414        } else {
415            first_index
416        };
417        let value = &fixed[first_index..];
418
419        out[0] = der::Tag::Integer as u8;
420
421        // Lengths less than 128 are encoded in one byte.
422        assert!(value.len() < 128);
423        out[1] = value.len() as u8;
424
425        out[2..][..value.len()].copy_from_slice(&value);
426
427        2 + value.len()
428    }
429
430    out[0] = der::Tag::Sequence as u8;
431    let r_tlv_len = format_integer_tlv(ops, r, &mut out[2..]);
432    let s_tlv_len = format_integer_tlv(ops, s, &mut out[2..][r_tlv_len..]);
433
434    // Lengths less than 128 are encoded in one byte.
435    let value_len = r_tlv_len + s_tlv_len;
436    assert!(value_len < 128);
437    out[1] = value_len as u8;
438
439    2 + value_len
440}
441
442/// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the
443/// P-256 curve and SHA-256.
444///
445/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
446/// documentation for more details.
447pub static ECDSA_P256_SHA256_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
448    curve: &ec::suite_b::curve::P256,
449    private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
450    private_key_ops: &p256::PRIVATE_KEY_OPS,
451    digest_alg: &digest::SHA256,
452    pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
453    format_rs: format_rs_fixed,
454    id: AlgorithmID::ECDSA_P256_SHA256_FIXED_SIGNING,
455};
456
457/// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the
458/// P-384 curve and SHA-384.
459///
460/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
461/// documentation for more details.
462pub static ECDSA_P384_SHA384_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
463    curve: &ec::suite_b::curve::P384,
464    private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
465    private_key_ops: &p384::PRIVATE_KEY_OPS,
466    digest_alg: &digest::SHA384,
467    pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
468    format_rs: format_rs_fixed,
469    id: AlgorithmID::ECDSA_P384_SHA384_FIXED_SIGNING,
470};
471
472/// Signing of ASN.1 DER-encoded ECDSA signatures using the P-256 curve and
473/// SHA-256.
474///
475/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
476/// documentation for more details.
477pub static ECDSA_P256_SHA256_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
478    curve: &ec::suite_b::curve::P256,
479    private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
480    private_key_ops: &p256::PRIVATE_KEY_OPS,
481    digest_alg: &digest::SHA256,
482    pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
483    format_rs: format_rs_asn1,
484    id: AlgorithmID::ECDSA_P256_SHA256_ASN1_SIGNING,
485};
486
487/// Signing of ASN.1 DER-encoded ECDSA signatures using the P-384 curve and
488/// SHA-384.
489///
490/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
491/// documentation for more details.
492pub static ECDSA_P384_SHA384_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm {
493    curve: &ec::suite_b::curve::P384,
494    private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
495    private_key_ops: &p384::PRIVATE_KEY_OPS,
496    digest_alg: &digest::SHA384,
497    pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
498    format_rs: format_rs_asn1,
499    id: AlgorithmID::ECDSA_P384_SHA384_ASN1_SIGNING,
500};
501
502static EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
503    bytes: include_bytes!("ecPublicKey_p256_pkcs8_v1_template.der"),
504    alg_id_range: core::ops::Range { start: 8, end: 27 },
505    curve_id_index: 9,
506    private_key_index: 0x24,
507};
508
509static EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
510    bytes: include_bytes!("ecPublicKey_p384_pkcs8_v1_template.der"),
511    alg_id_range: core::ops::Range { start: 8, end: 24 },
512    curve_id_index: 9,
513    private_key_index: 0x23,
514};
515
516#[cfg(test)]
517mod tests {
518    use crate::{signature, test};
519
520    #[test]
521    fn signature_ecdsa_sign_fixed_test() {
522        test::run(
523            test_file!("ecdsa_sign_fixed_tests.txt"),
524            |section, test_case| {
525                assert_eq!(section, "");
526
527                let curve_name = test_case.consume_string("Curve");
528                let digest_name = test_case.consume_string("Digest");
529                let msg = test_case.consume_bytes("Msg");
530                let d = test_case.consume_bytes("d");
531                let q = test_case.consume_bytes("Q");
532                let k = test_case.consume_bytes("k");
533
534                let expected_result = test_case.consume_bytes("Sig");
535
536                let alg = match (curve_name.as_str(), digest_name.as_str()) {
537                    ("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_FIXED_SIGNING,
538                    ("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_FIXED_SIGNING,
539                    _ => {
540                        panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
541                    }
542                };
543
544                let private_key =
545                    signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q).unwrap();
546                let rng = test::rand::FixedSliceRandom { bytes: &k };
547
548                let actual_result = private_key
549                    .sign_with_fixed_nonce_during_test(&rng, &msg)
550                    .unwrap();
551
552                assert_eq!(actual_result.as_ref(), &expected_result[..]);
553
554                Ok(())
555            },
556        );
557    }
558
559    #[test]
560    fn signature_ecdsa_sign_asn1_test() {
561        test::run(
562            test_file!("ecdsa_sign_asn1_tests.txt"),
563            |section, test_case| {
564                assert_eq!(section, "");
565
566                let curve_name = test_case.consume_string("Curve");
567                let digest_name = test_case.consume_string("Digest");
568                let msg = test_case.consume_bytes("Msg");
569                let d = test_case.consume_bytes("d");
570                let q = test_case.consume_bytes("Q");
571                let k = test_case.consume_bytes("k");
572
573                let expected_result = test_case.consume_bytes("Sig");
574
575                let alg = match (curve_name.as_str(), digest_name.as_str()) {
576                    ("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_ASN1_SIGNING,
577                    ("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_ASN1_SIGNING,
578                    _ => {
579                        panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
580                    }
581                };
582
583                let private_key =
584                    signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q).unwrap();
585                let rng = test::rand::FixedSliceRandom { bytes: &k };
586
587                let actual_result = private_key
588                    .sign_with_fixed_nonce_during_test(&rng, &msg)
589                    .unwrap();
590
591                assert_eq!(actual_result.as_ref(), &expected_result[..]);
592
593                Ok(())
594            },
595        );
596    }
597}