indexmap/set.rs
1//! A hash set implemented using [`IndexMap`]
2
3mod iter;
4mod mutable;
5mod slice;
6
7#[cfg(test)]
8mod tests;
9
10pub use self::iter::{
11 Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12};
13pub use self::mutable::MutableValues;
14pub use self::slice::Slice;
15
16#[cfg(feature = "rayon")]
17pub use crate::rayon::set as rayon;
18use crate::TryReserveError;
19
20#[cfg(feature = "std")]
21use std::collections::hash_map::RandomState;
22
23use crate::util::try_simplify_range;
24use alloc::boxed::Box;
25use alloc::vec::Vec;
26use core::cmp::Ordering;
27use core::fmt;
28use core::hash::{BuildHasher, Hash};
29use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31use super::{Equivalent, IndexMap};
32
33type Bucket<T> = super::Bucket<T, ()>;
34
35/// A hash set where the iteration order of the values is independent of their
36/// hash values.
37///
38/// The interface is closely compatible with the standard
39/// [`HashSet`][std::collections::HashSet],
40/// but also has additional features.
41///
42/// # Order
43///
44/// The values have a consistent order that is determined by the sequence of
45/// insertion and removal calls on the set. The order does not depend on the
46/// values or the hash function at all. Note that insertion order and value
47/// are not affected if a re-insertion is attempted once an element is
48/// already present.
49///
50/// All iterators traverse the set *in order*. Set operation iterators like
51/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52/// operators. See their documentation for specifics.
53///
54/// The insertion order is preserved, with **notable exceptions** like the
55/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56/// Methods such as [`.sort_by()`][Self::sort_by] of
57/// course result in a new order, depending on the sorting order.
58///
59/// # Indices
60///
61/// The values are indexed in a compact range without holes in the range
62/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63/// a value, and the method `.get_index` looks up the value by index.
64///
65/// # Complexity
66///
67/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68/// of the two are the same for most methods.
69///
70/// # Examples
71///
72/// ```
73/// use indexmap::IndexSet;
74///
75/// // Collects which letters appear in a sentence.
76/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77///
78/// assert!(letters.contains(&'s'));
79/// assert!(letters.contains(&'t'));
80/// assert!(letters.contains(&'u'));
81/// assert!(!letters.contains(&'y'));
82/// ```
83#[cfg(feature = "std")]
84pub struct IndexSet<T, S = RandomState> {
85 pub(crate) map: IndexMap<T, (), S>,
86}
87#[cfg(not(feature = "std"))]
88pub struct IndexSet<T, S> {
89 pub(crate) map: IndexMap<T, (), S>,
90}
91
92impl<T, S> Clone for IndexSet<T, S>
93where
94 T: Clone,
95 S: Clone,
96{
97 fn clone(&self) -> Self {
98 IndexSet {
99 map: self.map.clone(),
100 }
101 }
102
103 fn clone_from(&mut self, other: &Self) {
104 self.map.clone_from(&other.map);
105 }
106}
107
108impl<T, S> fmt::Debug for IndexSet<T, S>
109where
110 T: fmt::Debug,
111{
112 #[cfg(not(feature = "test_debug"))]
113 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114 f.debug_set().entries(self.iter()).finish()
115 }
116
117 #[cfg(feature = "test_debug")]
118 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119 // Let the inner `IndexMap` print all of its details
120 f.debug_struct("IndexSet").field("map", &self.map).finish()
121 }
122}
123
124#[cfg(feature = "std")]
125#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126impl<T> IndexSet<T> {
127 /// Create a new set. (Does not allocate.)
128 pub fn new() -> Self {
129 IndexSet {
130 map: IndexMap::new(),
131 }
132 }
133
134 /// Create a new set with capacity for `n` elements.
135 /// (Does not allocate if `n` is zero.)
136 ///
137 /// Computes in **O(n)** time.
138 pub fn with_capacity(n: usize) -> Self {
139 IndexSet {
140 map: IndexMap::with_capacity(n),
141 }
142 }
143}
144
145impl<T, S> IndexSet<T, S> {
146 /// Create a new set with capacity for `n` elements.
147 /// (Does not allocate if `n` is zero.)
148 ///
149 /// Computes in **O(n)** time.
150 pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151 IndexSet {
152 map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153 }
154 }
155
156 /// Create a new set with `hash_builder`.
157 ///
158 /// This function is `const`, so it
159 /// can be called in `static` contexts.
160 pub const fn with_hasher(hash_builder: S) -> Self {
161 IndexSet {
162 map: IndexMap::with_hasher(hash_builder),
163 }
164 }
165
166 #[inline]
167 pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168 self.map.into_entries()
169 }
170
171 #[inline]
172 pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173 self.map.as_entries()
174 }
175
176 pub(crate) fn with_entries<F>(&mut self, f: F)
177 where
178 F: FnOnce(&mut [Bucket<T>]),
179 {
180 self.map.with_entries(f);
181 }
182
183 /// Return the number of elements the set can hold without reallocating.
184 ///
185 /// This number is a lower bound; the set might be able to hold more,
186 /// but is guaranteed to be able to hold at least this many.
187 ///
188 /// Computes in **O(1)** time.
189 pub fn capacity(&self) -> usize {
190 self.map.capacity()
191 }
192
193 /// Return a reference to the set's `BuildHasher`.
194 pub fn hasher(&self) -> &S {
195 self.map.hasher()
196 }
197
198 /// Return the number of elements in the set.
199 ///
200 /// Computes in **O(1)** time.
201 pub fn len(&self) -> usize {
202 self.map.len()
203 }
204
205 /// Returns true if the set contains no elements.
206 ///
207 /// Computes in **O(1)** time.
208 pub fn is_empty(&self) -> bool {
209 self.map.is_empty()
210 }
211
212 /// Return an iterator over the values of the set, in their order
213 pub fn iter(&self) -> Iter<'_, T> {
214 Iter::new(self.as_entries())
215 }
216
217 /// Remove all elements in the set, while preserving its capacity.
218 ///
219 /// Computes in **O(n)** time.
220 pub fn clear(&mut self) {
221 self.map.clear();
222 }
223
224 /// Shortens the set, keeping the first `len` elements and dropping the rest.
225 ///
226 /// If `len` is greater than the set's current length, this has no effect.
227 pub fn truncate(&mut self, len: usize) {
228 self.map.truncate(len);
229 }
230
231 /// Clears the `IndexSet` in the given index range, returning those values
232 /// as a drain iterator.
233 ///
234 /// The range may be any type that implements [`RangeBounds<usize>`],
235 /// including all of the `std::ops::Range*` types, or even a tuple pair of
236 /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237 /// like `set.drain(..)`.
238 ///
239 /// This shifts down all entries following the drained range to fill the
240 /// gap, and keeps the allocated memory for reuse.
241 ///
242 /// ***Panics*** if the starting point is greater than the end point or if
243 /// the end point is greater than the length of the set.
244 #[track_caller]
245 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246 where
247 R: RangeBounds<usize>,
248 {
249 Drain::new(self.map.core.drain(range))
250 }
251
252 /// Creates an iterator which uses a closure to determine if a value should be removed,
253 /// for all values in the given range.
254 ///
255 /// If the closure returns true, then the value is removed and yielded.
256 /// If the closure returns false, the value will remain in the list and will not be yielded
257 /// by the iterator.
258 ///
259 /// The range may be any type that implements [`RangeBounds<usize>`],
260 /// including all of the `std::ops::Range*` types, or even a tuple pair of
261 /// `Bound` start and end values. To check the entire set, use `RangeFull`
262 /// like `set.extract_if(.., predicate)`.
263 ///
264 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265 /// or the iteration short-circuits, then the remaining elements will be retained.
266 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267 ///
268 /// [`retain`]: IndexSet::retain
269 ///
270 /// ***Panics*** if the starting point is greater than the end point or if
271 /// the end point is greater than the length of the set.
272 ///
273 /// # Examples
274 ///
275 /// Splitting a set into even and odd values, reusing the original set:
276 ///
277 /// ```
278 /// use indexmap::IndexSet;
279 ///
280 /// let mut set: IndexSet<i32> = (0..8).collect();
281 /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282 ///
283 /// let evens = extracted.into_iter().collect::<Vec<_>>();
284 /// let odds = set.into_iter().collect::<Vec<_>>();
285 ///
286 /// assert_eq!(evens, vec![0, 2, 4, 6]);
287 /// assert_eq!(odds, vec![1, 3, 5, 7]);
288 /// ```
289 #[track_caller]
290 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291 where
292 F: FnMut(&T) -> bool,
293 R: RangeBounds<usize>,
294 {
295 ExtractIf::new(&mut self.map.core, range, pred)
296 }
297
298 /// Splits the collection into two at the given index.
299 ///
300 /// Returns a newly allocated set containing the elements in the range
301 /// `[at, len)`. After the call, the original set will be left containing
302 /// the elements `[0, at)` with its previous capacity unchanged.
303 ///
304 /// ***Panics*** if `at > len`.
305 #[track_caller]
306 pub fn split_off(&mut self, at: usize) -> Self
307 where
308 S: Clone,
309 {
310 Self {
311 map: self.map.split_off(at),
312 }
313 }
314
315 /// Reserve capacity for `additional` more values.
316 ///
317 /// Computes in **O(n)** time.
318 pub fn reserve(&mut self, additional: usize) {
319 self.map.reserve(additional);
320 }
321
322 /// Reserve capacity for `additional` more values, without over-allocating.
323 ///
324 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325 /// frequent re-allocations. However, the underlying data structures may still have internal
326 /// capacity requirements, and the allocator itself may give more space than requested, so this
327 /// cannot be relied upon to be precisely minimal.
328 ///
329 /// Computes in **O(n)** time.
330 pub fn reserve_exact(&mut self, additional: usize) {
331 self.map.reserve_exact(additional);
332 }
333
334 /// Try to reserve capacity for `additional` more values.
335 ///
336 /// Computes in **O(n)** time.
337 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338 self.map.try_reserve(additional)
339 }
340
341 /// Try to reserve capacity for `additional` more values, without over-allocating.
342 ///
343 /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344 /// frequent re-allocations. However, the underlying data structures may still have internal
345 /// capacity requirements, and the allocator itself may give more space than requested, so this
346 /// cannot be relied upon to be precisely minimal.
347 ///
348 /// Computes in **O(n)** time.
349 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350 self.map.try_reserve_exact(additional)
351 }
352
353 /// Shrink the capacity of the set as much as possible.
354 ///
355 /// Computes in **O(n)** time.
356 pub fn shrink_to_fit(&mut self) {
357 self.map.shrink_to_fit();
358 }
359
360 /// Shrink the capacity of the set with a lower limit.
361 ///
362 /// Computes in **O(n)** time.
363 pub fn shrink_to(&mut self, min_capacity: usize) {
364 self.map.shrink_to(min_capacity);
365 }
366}
367
368impl<T, S> IndexSet<T, S>
369where
370 T: Hash + Eq,
371 S: BuildHasher,
372{
373 /// Insert the value into the set.
374 ///
375 /// If an equivalent item already exists in the set, it returns
376 /// `false` leaving the original value in the set and without
377 /// altering its insertion order. Otherwise, it inserts the new
378 /// item and returns `true`.
379 ///
380 /// Computes in **O(1)** time (amortized average).
381 pub fn insert(&mut self, value: T) -> bool {
382 self.map.insert(value, ()).is_none()
383 }
384
385 /// Insert the value into the set, and get its index.
386 ///
387 /// If an equivalent item already exists in the set, it returns
388 /// the index of the existing item and `false`, leaving the
389 /// original value in the set and without altering its insertion
390 /// order. Otherwise, it inserts the new item and returns the index
391 /// of the inserted item and `true`.
392 ///
393 /// Computes in **O(1)** time (amortized average).
394 pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395 let (index, existing) = self.map.insert_full(value, ());
396 (index, existing.is_none())
397 }
398
399 /// Insert the value into the set at its ordered position among sorted values.
400 ///
401 /// This is equivalent to finding the position with
402 /// [`binary_search`][Self::binary_search], and if needed calling
403 /// [`insert_before`][Self::insert_before] for a new value.
404 ///
405 /// If the sorted item is found in the set, it returns the index of that
406 /// existing item and `false`, without any change. Otherwise, it inserts the
407 /// new item and returns its sorted index and `true`.
408 ///
409 /// If the existing items are **not** already sorted, then the insertion
410 /// index is unspecified (like [`slice::binary_search`]), but the value
411 /// is moved to or inserted at that position regardless.
412 ///
413 /// Computes in **O(n)** time (average). Instead of repeating calls to
414 /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415 /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416 /// [`sort_unstable`][Self::sort_unstable] once.
417 pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418 where
419 T: Ord,
420 {
421 let (index, existing) = self.map.insert_sorted(value, ());
422 (index, existing.is_none())
423 }
424
425 /// Insert the value into the set at its ordered position among values
426 /// sorted by `cmp`.
427 ///
428 /// This is equivalent to finding the position with
429 /// [`binary_search_by`][Self::binary_search_by], then calling
430 /// [`insert_before`][Self::insert_before].
431 ///
432 /// If the existing items are **not** already sorted, then the insertion
433 /// index is unspecified (like [`slice::binary_search`]), but the value
434 /// is moved to or inserted at that position regardless.
435 ///
436 /// Computes in **O(n)** time (average).
437 pub fn insert_sorted_by<F>(&mut self, value: T, mut cmp: F) -> (usize, bool)
438 where
439 F: FnMut(&T, &T) -> Ordering,
440 {
441 let (index, existing) = self
442 .map
443 .insert_sorted_by(value, (), |a, (), b, ()| cmp(a, b));
444 (index, existing.is_none())
445 }
446
447 /// Insert the value into the set at its ordered position among values
448 /// using a sort-key extraction function.
449 ///
450 /// This is equivalent to finding the position with
451 /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`,
452 /// then calling [`insert_before`][Self::insert_before].
453 ///
454 /// If the existing items are **not** already sorted, then the insertion
455 /// index is unspecified (like [`slice::binary_search`]), but the value
456 /// is moved to or inserted at that position regardless.
457 ///
458 /// Computes in **O(n)** time (average).
459 pub fn insert_sorted_by_key<B, F>(&mut self, value: T, mut sort_key: F) -> (usize, bool)
460 where
461 B: Ord,
462 F: FnMut(&T) -> B,
463 {
464 let (index, existing) = self.map.insert_sorted_by_key(value, (), |k, _| sort_key(k));
465 (index, existing.is_none())
466 }
467
468 /// Insert the value into the set before the value at the given index, or at the end.
469 ///
470 /// If an equivalent item already exists in the set, it returns `false` leaving the
471 /// original value in the set, but moved to the new position. The returned index
472 /// will either be the given index or one less, depending on how the value moved.
473 /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
474 ///
475 /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
476 ///
477 /// ***Panics*** if `index` is out of bounds.
478 /// Valid indices are `0..=set.len()` (inclusive).
479 ///
480 /// Computes in **O(n)** time (average).
481 ///
482 /// # Examples
483 ///
484 /// ```
485 /// use indexmap::IndexSet;
486 /// let mut set: IndexSet<char> = ('a'..='z').collect();
487 ///
488 /// // The new value '*' goes exactly at the given index.
489 /// assert_eq!(set.get_index_of(&'*'), None);
490 /// assert_eq!(set.insert_before(10, '*'), (10, true));
491 /// assert_eq!(set.get_index_of(&'*'), Some(10));
492 ///
493 /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
494 /// assert_eq!(set.insert_before(10, 'a'), (9, false));
495 /// assert_eq!(set.get_index_of(&'a'), Some(9));
496 /// assert_eq!(set.get_index_of(&'*'), Some(10));
497 ///
498 /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
499 /// assert_eq!(set.insert_before(10, 'z'), (10, false));
500 /// assert_eq!(set.get_index_of(&'z'), Some(10));
501 /// assert_eq!(set.get_index_of(&'*'), Some(11));
502 ///
503 /// // Moving or inserting before the endpoint is also valid.
504 /// assert_eq!(set.len(), 27);
505 /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
506 /// assert_eq!(set.get_index_of(&'*'), Some(26));
507 /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
508 /// assert_eq!(set.get_index_of(&'+'), Some(27));
509 /// assert_eq!(set.len(), 28);
510 /// ```
511 #[track_caller]
512 pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
513 let (index, existing) = self.map.insert_before(index, value, ());
514 (index, existing.is_none())
515 }
516
517 /// Insert the value into the set at the given index.
518 ///
519 /// If an equivalent item already exists in the set, it returns `false` leaving
520 /// the original value in the set, but moved to the given index.
521 /// Note that existing values **cannot** be moved to `index == set.len()`!
522 /// (See [`insert_before`](Self::insert_before) for different behavior here.)
523 ///
524 /// Otherwise, it inserts the new value at the given index and returns `true`.
525 ///
526 /// ***Panics*** if `index` is out of bounds.
527 /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
528 /// `0..=set.len()` (inclusive) when inserting a new value.
529 ///
530 /// Computes in **O(n)** time (average).
531 ///
532 /// # Examples
533 ///
534 /// ```
535 /// use indexmap::IndexSet;
536 /// let mut set: IndexSet<char> = ('a'..='z').collect();
537 ///
538 /// // The new value '*' goes exactly at the given index.
539 /// assert_eq!(set.get_index_of(&'*'), None);
540 /// assert_eq!(set.shift_insert(10, '*'), true);
541 /// assert_eq!(set.get_index_of(&'*'), Some(10));
542 ///
543 /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
544 /// assert_eq!(set.shift_insert(10, 'a'), false);
545 /// assert_eq!(set.get_index_of(&'a'), Some(10));
546 /// assert_eq!(set.get_index_of(&'*'), Some(9));
547 ///
548 /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
549 /// assert_eq!(set.shift_insert(9, 'z'), false);
550 /// assert_eq!(set.get_index_of(&'z'), Some(9));
551 /// assert_eq!(set.get_index_of(&'*'), Some(10));
552 ///
553 /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
554 /// assert_eq!(set.len(), 27);
555 /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
556 /// assert_eq!(set.get_index_of(&'*'), Some(26));
557 /// assert_eq!(set.shift_insert(set.len(), '+'), true);
558 /// assert_eq!(set.get_index_of(&'+'), Some(27));
559 /// assert_eq!(set.len(), 28);
560 /// ```
561 ///
562 /// ```should_panic
563 /// use indexmap::IndexSet;
564 /// let mut set: IndexSet<char> = ('a'..='z').collect();
565 ///
566 /// // This is an invalid index for moving an existing value!
567 /// set.shift_insert(set.len(), 'a');
568 /// ```
569 #[track_caller]
570 pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
571 self.map.shift_insert(index, value, ()).is_none()
572 }
573
574 /// Adds a value to the set, replacing the existing value, if any, that is
575 /// equal to the given one, without altering its insertion order. Returns
576 /// the replaced value.
577 ///
578 /// Computes in **O(1)** time (average).
579 pub fn replace(&mut self, value: T) -> Option<T> {
580 self.replace_full(value).1
581 }
582
583 /// Adds a value to the set, replacing the existing value, if any, that is
584 /// equal to the given one, without altering its insertion order. Returns
585 /// the index of the item and its replaced value.
586 ///
587 /// Computes in **O(1)** time (average).
588 pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
589 let hash = self.map.hash(&value);
590 match self.map.core.replace_full(hash, value, ()) {
591 (i, Some((replaced, ()))) => (i, Some(replaced)),
592 (i, None) => (i, None),
593 }
594 }
595
596 /// Replaces the value at the given index. The new value does not need to be
597 /// equivalent to the one it is replacing, but it must be unique to the rest
598 /// of the set.
599 ///
600 /// Returns `Ok(old_value)` if successful, or `Err((other_index, value))` if
601 /// an equivalent value already exists at a different index. The set will be
602 /// unchanged in the error case.
603 ///
604 /// ***Panics*** if `index` is out of bounds.
605 ///
606 /// Computes in **O(1)** time (average).
607 #[track_caller]
608 pub fn replace_index(&mut self, index: usize, value: T) -> Result<T, (usize, T)> {
609 self.map.replace_index(index, value)
610 }
611
612 /// Return an iterator over the values that are in `self` but not `other`.
613 ///
614 /// Values are produced in the same order that they appear in `self`.
615 pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
616 where
617 S2: BuildHasher,
618 {
619 Difference::new(self, other)
620 }
621
622 /// Return an iterator over the values that are in `self` or `other`,
623 /// but not in both.
624 ///
625 /// Values from `self` are produced in their original order, followed by
626 /// values from `other` in their original order.
627 pub fn symmetric_difference<'a, S2>(
628 &'a self,
629 other: &'a IndexSet<T, S2>,
630 ) -> SymmetricDifference<'a, T, S, S2>
631 where
632 S2: BuildHasher,
633 {
634 SymmetricDifference::new(self, other)
635 }
636
637 /// Return an iterator over the values that are in both `self` and `other`.
638 ///
639 /// Values are produced in the same order that they appear in `self`.
640 pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
641 where
642 S2: BuildHasher,
643 {
644 Intersection::new(self, other)
645 }
646
647 /// Return an iterator over all values that are in `self` or `other`.
648 ///
649 /// Values from `self` are produced in their original order, followed by
650 /// values that are unique to `other` in their original order.
651 pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
652 where
653 S2: BuildHasher,
654 {
655 Union::new(self, other)
656 }
657
658 /// Creates a splicing iterator that replaces the specified range in the set
659 /// with the given `replace_with` iterator and yields the removed items.
660 /// `replace_with` does not need to be the same length as `range`.
661 ///
662 /// The `range` is removed even if the iterator is not consumed until the
663 /// end. It is unspecified how many elements are removed from the set if the
664 /// `Splice` value is leaked.
665 ///
666 /// The input iterator `replace_with` is only consumed when the `Splice`
667 /// value is dropped. If a value from the iterator matches an existing entry
668 /// in the set (outside of `range`), then the original will be unchanged.
669 /// Otherwise, the new value will be inserted in the replaced `range`.
670 ///
671 /// ***Panics*** if the starting point is greater than the end point or if
672 /// the end point is greater than the length of the set.
673 ///
674 /// # Examples
675 ///
676 /// ```
677 /// use indexmap::IndexSet;
678 ///
679 /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
680 /// let new = [5, 4, 3, 2, 1];
681 /// let removed: Vec<_> = set.splice(2..4, new).collect();
682 ///
683 /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
684 /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
685 /// assert_eq!(removed, &[2, 3]);
686 /// ```
687 #[track_caller]
688 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
689 where
690 R: RangeBounds<usize>,
691 I: IntoIterator<Item = T>,
692 {
693 Splice::new(self, range, replace_with.into_iter())
694 }
695
696 /// Moves all values from `other` into `self`, leaving `other` empty.
697 ///
698 /// This is equivalent to calling [`insert`][Self::insert] for each value
699 /// from `other` in order, which means that values that already exist
700 /// in `self` are unchanged in their current position.
701 ///
702 /// See also [`union`][Self::union] to iterate the combined values by
703 /// reference, without modifying `self` or `other`.
704 ///
705 /// # Examples
706 ///
707 /// ```
708 /// use indexmap::IndexSet;
709 ///
710 /// let mut a = IndexSet::from([3, 2, 1]);
711 /// let mut b = IndexSet::from([3, 4, 5]);
712 /// let old_capacity = b.capacity();
713 ///
714 /// a.append(&mut b);
715 ///
716 /// assert_eq!(a.len(), 5);
717 /// assert_eq!(b.len(), 0);
718 /// assert_eq!(b.capacity(), old_capacity);
719 ///
720 /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
721 /// ```
722 pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
723 self.map.append(&mut other.map);
724 }
725}
726
727impl<T, S> IndexSet<T, S>
728where
729 S: BuildHasher,
730{
731 /// Return `true` if an equivalent to `value` exists in the set.
732 ///
733 /// Computes in **O(1)** time (average).
734 pub fn contains<Q>(&self, value: &Q) -> bool
735 where
736 Q: ?Sized + Hash + Equivalent<T>,
737 {
738 self.map.contains_key(value)
739 }
740
741 /// Return a reference to the value stored in the set, if it is present,
742 /// else `None`.
743 ///
744 /// Computes in **O(1)** time (average).
745 pub fn get<Q>(&self, value: &Q) -> Option<&T>
746 where
747 Q: ?Sized + Hash + Equivalent<T>,
748 {
749 self.map.get_key_value(value).map(|(x, &())| x)
750 }
751
752 /// Return item index and value
753 pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
754 where
755 Q: ?Sized + Hash + Equivalent<T>,
756 {
757 self.map.get_full(value).map(|(i, x, &())| (i, x))
758 }
759
760 /// Return item index, if it exists in the set
761 ///
762 /// Computes in **O(1)** time (average).
763 pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
764 where
765 Q: ?Sized + Hash + Equivalent<T>,
766 {
767 self.map.get_index_of(value)
768 }
769
770 /// Remove the value from the set, and return `true` if it was present.
771 ///
772 /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
773 /// value's position with the last element, and it is deprecated in favor of calling that
774 /// explicitly. If you need to preserve the relative order of the values in the set, use
775 /// [`.shift_remove(value)`][Self::shift_remove] instead.
776 #[deprecated(note = "`remove` disrupts the set order -- \
777 use `swap_remove` or `shift_remove` for explicit behavior.")]
778 pub fn remove<Q>(&mut self, value: &Q) -> bool
779 where
780 Q: ?Sized + Hash + Equivalent<T>,
781 {
782 self.swap_remove(value)
783 }
784
785 /// Remove the value from the set, and return `true` if it was present.
786 ///
787 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
788 /// last element of the set and popping it off. **This perturbs
789 /// the position of what used to be the last element!**
790 ///
791 /// Return `false` if `value` was not in the set.
792 ///
793 /// Computes in **O(1)** time (average).
794 pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
795 where
796 Q: ?Sized + Hash + Equivalent<T>,
797 {
798 self.map.swap_remove(value).is_some()
799 }
800
801 /// Remove the value from the set, and return `true` if it was present.
802 ///
803 /// Like [`Vec::remove`], the value is removed by shifting all of the
804 /// elements that follow it, preserving their relative order.
805 /// **This perturbs the index of all of those elements!**
806 ///
807 /// Return `false` if `value` was not in the set.
808 ///
809 /// Computes in **O(n)** time (average).
810 pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
811 where
812 Q: ?Sized + Hash + Equivalent<T>,
813 {
814 self.map.shift_remove(value).is_some()
815 }
816
817 /// Removes and returns the value in the set, if any, that is equal to the
818 /// given one.
819 ///
820 /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
821 /// value's position with the last element, and it is deprecated in favor of calling that
822 /// explicitly. If you need to preserve the relative order of the values in the set, use
823 /// [`.shift_take(value)`][Self::shift_take] instead.
824 #[deprecated(note = "`take` disrupts the set order -- \
825 use `swap_take` or `shift_take` for explicit behavior.")]
826 pub fn take<Q>(&mut self, value: &Q) -> Option<T>
827 where
828 Q: ?Sized + Hash + Equivalent<T>,
829 {
830 self.swap_take(value)
831 }
832
833 /// Removes and returns the value in the set, if any, that is equal to the
834 /// given one.
835 ///
836 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
837 /// last element of the set and popping it off. **This perturbs
838 /// the position of what used to be the last element!**
839 ///
840 /// Return `None` if `value` was not in the set.
841 ///
842 /// Computes in **O(1)** time (average).
843 pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
844 where
845 Q: ?Sized + Hash + Equivalent<T>,
846 {
847 self.map.swap_remove_entry(value).map(|(x, ())| x)
848 }
849
850 /// Removes and returns the value in the set, if any, that is equal to the
851 /// given one.
852 ///
853 /// Like [`Vec::remove`], the value is removed by shifting all of the
854 /// elements that follow it, preserving their relative order.
855 /// **This perturbs the index of all of those elements!**
856 ///
857 /// Return `None` if `value` was not in the set.
858 ///
859 /// Computes in **O(n)** time (average).
860 pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
861 where
862 Q: ?Sized + Hash + Equivalent<T>,
863 {
864 self.map.shift_remove_entry(value).map(|(x, ())| x)
865 }
866
867 /// Remove the value from the set return it and the index it had.
868 ///
869 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
870 /// last element of the set and popping it off. **This perturbs
871 /// the position of what used to be the last element!**
872 ///
873 /// Return `None` if `value` was not in the set.
874 pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
875 where
876 Q: ?Sized + Hash + Equivalent<T>,
877 {
878 self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
879 }
880
881 /// Remove the value from the set return it and the index it had.
882 ///
883 /// Like [`Vec::remove`], the value is removed by shifting all of the
884 /// elements that follow it, preserving their relative order.
885 /// **This perturbs the index of all of those elements!**
886 ///
887 /// Return `None` if `value` was not in the set.
888 pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
889 where
890 Q: ?Sized + Hash + Equivalent<T>,
891 {
892 self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
893 }
894}
895
896impl<T, S> IndexSet<T, S> {
897 /// Remove the last value
898 ///
899 /// This preserves the order of the remaining elements.
900 ///
901 /// Computes in **O(1)** time (average).
902 #[doc(alias = "pop_last")] // like `BTreeSet`
903 pub fn pop(&mut self) -> Option<T> {
904 self.map.pop().map(|(x, ())| x)
905 }
906
907 /// Scan through each value in the set and keep those where the
908 /// closure `keep` returns `true`.
909 ///
910 /// The elements are visited in order, and remaining elements keep their
911 /// order.
912 ///
913 /// Computes in **O(n)** time (average).
914 pub fn retain<F>(&mut self, mut keep: F)
915 where
916 F: FnMut(&T) -> bool,
917 {
918 self.map.retain(move |x, &mut ()| keep(x))
919 }
920
921 /// Sort the set's values by their default ordering.
922 ///
923 /// This is a stable sort -- but equivalent values should not normally coexist in
924 /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
925 /// because it is generally faster and doesn't allocate auxiliary memory.
926 ///
927 /// See [`sort_by`](Self::sort_by) for details.
928 pub fn sort(&mut self)
929 where
930 T: Ord,
931 {
932 self.map.sort_keys()
933 }
934
935 /// Sort the set's values in place using the comparison function `cmp`.
936 ///
937 /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
938 pub fn sort_by<F>(&mut self, mut cmp: F)
939 where
940 F: FnMut(&T, &T) -> Ordering,
941 {
942 self.map.sort_by(move |a, (), b, ()| cmp(a, b));
943 }
944
945 /// Sort the values of the set and return a by-value iterator of
946 /// the values with the result.
947 ///
948 /// The sort is stable.
949 pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
950 where
951 F: FnMut(&T, &T) -> Ordering,
952 {
953 let mut entries = self.into_entries();
954 entries.sort_by(move |a, b| cmp(&a.key, &b.key));
955 IntoIter::new(entries)
956 }
957
958 /// Sort the set's values in place using a key extraction function.
959 ///
960 /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
961 pub fn sort_by_key<K, F>(&mut self, mut sort_key: F)
962 where
963 K: Ord,
964 F: FnMut(&T) -> K,
965 {
966 self.with_entries(move |entries| {
967 entries.sort_by_key(move |a| sort_key(&a.key));
968 });
969 }
970
971 /// Sort the set's values by their default ordering.
972 ///
973 /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
974 pub fn sort_unstable(&mut self)
975 where
976 T: Ord,
977 {
978 self.map.sort_unstable_keys()
979 }
980
981 /// Sort the set's values in place using the comparison function `cmp`.
982 ///
983 /// Computes in **O(n log n)** time. The sort is unstable.
984 pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
985 where
986 F: FnMut(&T, &T) -> Ordering,
987 {
988 self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
989 }
990
991 /// Sort the values of the set and return a by-value iterator of
992 /// the values with the result.
993 pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
994 where
995 F: FnMut(&T, &T) -> Ordering,
996 {
997 let mut entries = self.into_entries();
998 entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
999 IntoIter::new(entries)
1000 }
1001
1002 /// Sort the set's values in place using a key extraction function.
1003 ///
1004 /// Computes in **O(n log n)** time. The sort is unstable.
1005 pub fn sort_unstable_by_key<K, F>(&mut self, mut sort_key: F)
1006 where
1007 K: Ord,
1008 F: FnMut(&T) -> K,
1009 {
1010 self.with_entries(move |entries| {
1011 entries.sort_unstable_by_key(move |a| sort_key(&a.key));
1012 });
1013 }
1014
1015 /// Sort the set's values in place using a key extraction function.
1016 ///
1017 /// During sorting, the function is called at most once per entry, by using temporary storage
1018 /// to remember the results of its evaluation. The order of calls to the function is
1019 /// unspecified and may change between versions of `indexmap` or the standard library.
1020 ///
1021 /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1022 /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1023 pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
1024 where
1025 K: Ord,
1026 F: FnMut(&T) -> K,
1027 {
1028 self.with_entries(move |entries| {
1029 entries.sort_by_cached_key(move |a| sort_key(&a.key));
1030 });
1031 }
1032
1033 /// Search over a sorted set for a value.
1034 ///
1035 /// Returns the position where that value is present, or the position where it can be inserted
1036 /// to maintain the sort. See [`slice::binary_search`] for more details.
1037 ///
1038 /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
1039 /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
1040 pub fn binary_search(&self, x: &T) -> Result<usize, usize>
1041 where
1042 T: Ord,
1043 {
1044 self.as_slice().binary_search(x)
1045 }
1046
1047 /// Search over a sorted set with a comparator function.
1048 ///
1049 /// Returns the position where that value is present, or the position where it can be inserted
1050 /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1051 ///
1052 /// Computes in **O(log(n))** time.
1053 #[inline]
1054 pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1055 where
1056 F: FnMut(&'a T) -> Ordering,
1057 {
1058 self.as_slice().binary_search_by(f)
1059 }
1060
1061 /// Search over a sorted set with an extraction function.
1062 ///
1063 /// Returns the position where that value is present, or the position where it can be inserted
1064 /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1065 ///
1066 /// Computes in **O(log(n))** time.
1067 #[inline]
1068 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1069 where
1070 F: FnMut(&'a T) -> B,
1071 B: Ord,
1072 {
1073 self.as_slice().binary_search_by_key(b, f)
1074 }
1075
1076 /// Checks if the values of this set are sorted.
1077 #[inline]
1078 pub fn is_sorted(&self) -> bool
1079 where
1080 T: PartialOrd,
1081 {
1082 self.as_slice().is_sorted()
1083 }
1084
1085 /// Checks if this set is sorted using the given comparator function.
1086 #[inline]
1087 pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1088 where
1089 F: FnMut(&'a T, &'a T) -> bool,
1090 {
1091 self.as_slice().is_sorted_by(cmp)
1092 }
1093
1094 /// Checks if this set is sorted using the given sort-key function.
1095 #[inline]
1096 pub fn is_sorted_by_key<'a, F, K>(&'a self, sort_key: F) -> bool
1097 where
1098 F: FnMut(&'a T) -> K,
1099 K: PartialOrd,
1100 {
1101 self.as_slice().is_sorted_by_key(sort_key)
1102 }
1103
1104 /// Returns the index of the partition point of a sorted set according to the given predicate
1105 /// (the index of the first element of the second partition).
1106 ///
1107 /// See [`slice::partition_point`] for more details.
1108 ///
1109 /// Computes in **O(log(n))** time.
1110 #[must_use]
1111 pub fn partition_point<P>(&self, pred: P) -> usize
1112 where
1113 P: FnMut(&T) -> bool,
1114 {
1115 self.as_slice().partition_point(pred)
1116 }
1117
1118 /// Reverses the order of the set's values in place.
1119 ///
1120 /// Computes in **O(n)** time and **O(1)** space.
1121 pub fn reverse(&mut self) {
1122 self.map.reverse()
1123 }
1124
1125 /// Returns a slice of all the values in the set.
1126 ///
1127 /// Computes in **O(1)** time.
1128 pub fn as_slice(&self) -> &Slice<T> {
1129 Slice::from_slice(self.as_entries())
1130 }
1131
1132 /// Converts into a boxed slice of all the values in the set.
1133 ///
1134 /// Note that this will drop the inner hash table and any excess capacity.
1135 pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1136 Slice::from_boxed(self.into_entries().into_boxed_slice())
1137 }
1138
1139 /// Get a value by index
1140 ///
1141 /// Valid indices are `0 <= index < self.len()`.
1142 ///
1143 /// Computes in **O(1)** time.
1144 pub fn get_index(&self, index: usize) -> Option<&T> {
1145 self.as_entries().get(index).map(Bucket::key_ref)
1146 }
1147
1148 /// Returns a slice of values in the given range of indices.
1149 ///
1150 /// Valid indices are `0 <= index < self.len()`.
1151 ///
1152 /// Computes in **O(1)** time.
1153 pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1154 let entries = self.as_entries();
1155 let range = try_simplify_range(range, entries.len())?;
1156 entries.get(range).map(Slice::from_slice)
1157 }
1158
1159 /// Get the first value
1160 ///
1161 /// Computes in **O(1)** time.
1162 pub fn first(&self) -> Option<&T> {
1163 self.as_entries().first().map(Bucket::key_ref)
1164 }
1165
1166 /// Get the last value
1167 ///
1168 /// Computes in **O(1)** time.
1169 pub fn last(&self) -> Option<&T> {
1170 self.as_entries().last().map(Bucket::key_ref)
1171 }
1172
1173 /// Remove the value by index
1174 ///
1175 /// Valid indices are `0 <= index < self.len()`.
1176 ///
1177 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1178 /// last element of the set and popping it off. **This perturbs
1179 /// the position of what used to be the last element!**
1180 ///
1181 /// Computes in **O(1)** time (average).
1182 pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1183 self.map.swap_remove_index(index).map(|(x, ())| x)
1184 }
1185
1186 /// Remove the value by index
1187 ///
1188 /// Valid indices are `0 <= index < self.len()`.
1189 ///
1190 /// Like [`Vec::remove`], the value is removed by shifting all of the
1191 /// elements that follow it, preserving their relative order.
1192 /// **This perturbs the index of all of those elements!**
1193 ///
1194 /// Computes in **O(n)** time (average).
1195 pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1196 self.map.shift_remove_index(index).map(|(x, ())| x)
1197 }
1198
1199 /// Moves the position of a value from one index to another
1200 /// by shifting all other values in-between.
1201 ///
1202 /// * If `from < to`, the other values will shift down while the targeted value moves up.
1203 /// * If `from > to`, the other values will shift up while the targeted value moves down.
1204 ///
1205 /// ***Panics*** if `from` or `to` are out of bounds.
1206 ///
1207 /// Computes in **O(n)** time (average).
1208 #[track_caller]
1209 pub fn move_index(&mut self, from: usize, to: usize) {
1210 self.map.move_index(from, to)
1211 }
1212
1213 /// Swaps the position of two values in the set.
1214 ///
1215 /// ***Panics*** if `a` or `b` are out of bounds.
1216 ///
1217 /// Computes in **O(1)** time (average).
1218 #[track_caller]
1219 pub fn swap_indices(&mut self, a: usize, b: usize) {
1220 self.map.swap_indices(a, b)
1221 }
1222}
1223
1224/// Access [`IndexSet`] values at indexed positions.
1225///
1226/// # Examples
1227///
1228/// ```
1229/// use indexmap::IndexSet;
1230///
1231/// let mut set = IndexSet::new();
1232/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1233/// set.insert(word.to_string());
1234/// }
1235/// assert_eq!(set[0], "Lorem");
1236/// assert_eq!(set[1], "ipsum");
1237/// set.reverse();
1238/// assert_eq!(set[0], "amet");
1239/// assert_eq!(set[1], "sit");
1240/// set.sort();
1241/// assert_eq!(set[0], "Lorem");
1242/// assert_eq!(set[1], "amet");
1243/// ```
1244///
1245/// ```should_panic
1246/// use indexmap::IndexSet;
1247///
1248/// let mut set = IndexSet::new();
1249/// set.insert("foo");
1250/// println!("{:?}", set[10]); // panics!
1251/// ```
1252impl<T, S> Index<usize> for IndexSet<T, S> {
1253 type Output = T;
1254
1255 /// Returns a reference to the value at the supplied `index`.
1256 ///
1257 /// ***Panics*** if `index` is out of bounds.
1258 fn index(&self, index: usize) -> &T {
1259 if let Some(value) = self.get_index(index) {
1260 value
1261 } else {
1262 panic!(
1263 "index out of bounds: the len is {len} but the index is {index}",
1264 len = self.len()
1265 );
1266 }
1267 }
1268}
1269
1270impl<T, S> FromIterator<T> for IndexSet<T, S>
1271where
1272 T: Hash + Eq,
1273 S: BuildHasher + Default,
1274{
1275 fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1276 let iter = iterable.into_iter().map(|x| (x, ()));
1277 IndexSet {
1278 map: IndexMap::from_iter(iter),
1279 }
1280 }
1281}
1282
1283#[cfg(feature = "std")]
1284#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1285impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1286where
1287 T: Eq + Hash,
1288{
1289 /// # Examples
1290 ///
1291 /// ```
1292 /// use indexmap::IndexSet;
1293 ///
1294 /// let set1 = IndexSet::from([1, 2, 3, 4]);
1295 /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1296 /// assert_eq!(set1, set2);
1297 /// ```
1298 fn from(arr: [T; N]) -> Self {
1299 Self::from_iter(arr)
1300 }
1301}
1302
1303impl<T, S> Extend<T> for IndexSet<T, S>
1304where
1305 T: Hash + Eq,
1306 S: BuildHasher,
1307{
1308 fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1309 let iter = iterable.into_iter().map(|x| (x, ()));
1310 self.map.extend(iter);
1311 }
1312}
1313
1314impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1315where
1316 T: Hash + Eq + Copy + 'a,
1317 S: BuildHasher,
1318{
1319 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1320 let iter = iterable.into_iter().copied();
1321 self.extend(iter);
1322 }
1323}
1324
1325impl<T, S> Default for IndexSet<T, S>
1326where
1327 S: Default,
1328{
1329 /// Return an empty [`IndexSet`]
1330 fn default() -> Self {
1331 IndexSet {
1332 map: IndexMap::default(),
1333 }
1334 }
1335}
1336
1337impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1338where
1339 T: Hash + Eq,
1340 S1: BuildHasher,
1341 S2: BuildHasher,
1342{
1343 fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1344 self.len() == other.len() && self.is_subset(other)
1345 }
1346}
1347
1348impl<T, S> Eq for IndexSet<T, S>
1349where
1350 T: Eq + Hash,
1351 S: BuildHasher,
1352{
1353}
1354
1355impl<T, S> IndexSet<T, S>
1356where
1357 T: Eq + Hash,
1358 S: BuildHasher,
1359{
1360 /// Returns `true` if `self` has no elements in common with `other`.
1361 pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1362 where
1363 S2: BuildHasher,
1364 {
1365 if self.len() <= other.len() {
1366 self.iter().all(move |value| !other.contains(value))
1367 } else {
1368 other.iter().all(move |value| !self.contains(value))
1369 }
1370 }
1371
1372 /// Returns `true` if all elements of `self` are contained in `other`.
1373 pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1374 where
1375 S2: BuildHasher,
1376 {
1377 self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1378 }
1379
1380 /// Returns `true` if all elements of `other` are contained in `self`.
1381 pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1382 where
1383 S2: BuildHasher,
1384 {
1385 other.is_subset(self)
1386 }
1387}
1388
1389impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1390where
1391 T: Eq + Hash + Clone,
1392 S1: BuildHasher + Default,
1393 S2: BuildHasher,
1394{
1395 type Output = IndexSet<T, S1>;
1396
1397 /// Returns the set intersection, cloned into a new set.
1398 ///
1399 /// Values are collected in the same order that they appear in `self`.
1400 fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1401 self.intersection(other).cloned().collect()
1402 }
1403}
1404
1405impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1406where
1407 T: Eq + Hash + Clone,
1408 S1: BuildHasher + Default,
1409 S2: BuildHasher,
1410{
1411 type Output = IndexSet<T, S1>;
1412
1413 /// Returns the set union, cloned into a new set.
1414 ///
1415 /// Values from `self` are collected in their original order, followed by
1416 /// values that are unique to `other` in their original order.
1417 fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1418 self.union(other).cloned().collect()
1419 }
1420}
1421
1422impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1423where
1424 T: Eq + Hash + Clone,
1425 S1: BuildHasher + Default,
1426 S2: BuildHasher,
1427{
1428 type Output = IndexSet<T, S1>;
1429
1430 /// Returns the set symmetric-difference, cloned into a new set.
1431 ///
1432 /// Values from `self` are collected in their original order, followed by
1433 /// values from `other` in their original order.
1434 fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1435 self.symmetric_difference(other).cloned().collect()
1436 }
1437}
1438
1439impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1440where
1441 T: Eq + Hash + Clone,
1442 S1: BuildHasher + Default,
1443 S2: BuildHasher,
1444{
1445 type Output = IndexSet<T, S1>;
1446
1447 /// Returns the set difference, cloned into a new set.
1448 ///
1449 /// Values are collected in the same order that they appear in `self`.
1450 fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1451 self.difference(other).cloned().collect()
1452 }
1453}