indexmap/map.rs
1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19 Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
20 Values, ValuesMut,
21};
22pub use self::mutable::MutableEntryKey;
23pub use self::mutable::MutableKeys;
24pub use self::slice::Slice;
25
26#[cfg(feature = "rayon")]
27pub use crate::rayon::map as rayon;
28
29use ::core::cmp::Ordering;
30use ::core::fmt;
31use ::core::hash::{BuildHasher, Hash, Hasher};
32use ::core::mem;
33use ::core::ops::{Index, IndexMut, RangeBounds};
34use alloc::boxed::Box;
35use alloc::vec::Vec;
36
37#[cfg(feature = "std")]
38use std::collections::hash_map::RandomState;
39
40pub(crate) use self::core::{ExtractCore, IndexMapCore};
41use crate::util::{third, try_simplify_range};
42use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
43
44/// A hash table where the iteration order of the key-value pairs is independent
45/// of the hash values of the keys.
46///
47/// The interface is closely compatible with the standard
48/// [`HashMap`][std::collections::HashMap],
49/// but also has additional features.
50///
51/// # Order
52///
53/// The key-value pairs have a consistent order that is determined by
54/// the sequence of insertion and removal calls on the map. The order does
55/// not depend on the keys or the hash function at all.
56///
57/// All iterators traverse the map in *the order*.
58///
59/// The insertion order is preserved, with **notable exceptions** like the
60/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
61/// Methods such as [`.sort_by()`][Self::sort_by] of
62/// course result in a new order, depending on the sorting order.
63///
64/// # Indices
65///
66/// The key-value pairs are indexed in a compact range without holes in the
67/// range `0..self.len()`. For example, the method `.get_full` looks up the
68/// index for a key, and the method `.get_index` looks up the key-value pair by
69/// index.
70///
71/// # Examples
72///
73/// ```
74/// use indexmap::IndexMap;
75///
76/// // count the frequency of each letter in a sentence.
77/// let mut letters = IndexMap::new();
78/// for ch in "a short treatise on fungi".chars() {
79/// *letters.entry(ch).or_insert(0) += 1;
80/// }
81///
82/// assert_eq!(letters[&'s'], 2);
83/// assert_eq!(letters[&'t'], 3);
84/// assert_eq!(letters[&'u'], 1);
85/// assert_eq!(letters.get(&'y'), None);
86/// ```
87#[cfg(feature = "std")]
88pub struct IndexMap<K, V, S = RandomState> {
89 pub(crate) core: IndexMapCore<K, V>,
90 hash_builder: S,
91}
92#[cfg(not(feature = "std"))]
93pub struct IndexMap<K, V, S> {
94 pub(crate) core: IndexMapCore<K, V>,
95 hash_builder: S,
96}
97
98impl<K, V, S> Clone for IndexMap<K, V, S>
99where
100 K: Clone,
101 V: Clone,
102 S: Clone,
103{
104 fn clone(&self) -> Self {
105 IndexMap {
106 core: self.core.clone(),
107 hash_builder: self.hash_builder.clone(),
108 }
109 }
110
111 fn clone_from(&mut self, other: &Self) {
112 self.core.clone_from(&other.core);
113 self.hash_builder.clone_from(&other.hash_builder);
114 }
115}
116
117impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
118where
119 K: fmt::Debug,
120 V: fmt::Debug,
121{
122 #[cfg(not(feature = "test_debug"))]
123 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124 f.debug_map().entries(self.iter()).finish()
125 }
126
127 #[cfg(feature = "test_debug")]
128 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
129 // Let the inner `IndexMapCore` print all of its details
130 f.debug_struct("IndexMap")
131 .field("core", &self.core)
132 .finish()
133 }
134}
135
136#[cfg(feature = "std")]
137#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
138impl<K, V> IndexMap<K, V> {
139 /// Create a new map. (Does not allocate.)
140 #[inline]
141 pub fn new() -> Self {
142 Self::with_capacity(0)
143 }
144
145 /// Create a new map with capacity for `n` key-value pairs. (Does not
146 /// allocate if `n` is zero.)
147 ///
148 /// Computes in **O(n)** time.
149 #[inline]
150 pub fn with_capacity(n: usize) -> Self {
151 Self::with_capacity_and_hasher(n, <_>::default())
152 }
153}
154
155impl<K, V, S> IndexMap<K, V, S> {
156 /// Create a new map with capacity for `n` key-value pairs. (Does not
157 /// allocate if `n` is zero.)
158 ///
159 /// Computes in **O(n)** time.
160 #[inline]
161 pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
162 if n == 0 {
163 Self::with_hasher(hash_builder)
164 } else {
165 IndexMap {
166 core: IndexMapCore::with_capacity(n),
167 hash_builder,
168 }
169 }
170 }
171
172 /// Create a new map with `hash_builder`.
173 ///
174 /// This function is `const`, so it
175 /// can be called in `static` contexts.
176 pub const fn with_hasher(hash_builder: S) -> Self {
177 IndexMap {
178 core: IndexMapCore::new(),
179 hash_builder,
180 }
181 }
182
183 #[inline]
184 pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
185 self.core.into_entries()
186 }
187
188 #[inline]
189 pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
190 self.core.as_entries()
191 }
192
193 #[inline]
194 pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
195 self.core.as_entries_mut()
196 }
197
198 pub(crate) fn with_entries<F>(&mut self, f: F)
199 where
200 F: FnOnce(&mut [Bucket<K, V>]),
201 {
202 self.core.with_entries(f);
203 }
204
205 /// Return the number of elements the map can hold without reallocating.
206 ///
207 /// This number is a lower bound; the map might be able to hold more,
208 /// but is guaranteed to be able to hold at least this many.
209 ///
210 /// Computes in **O(1)** time.
211 pub fn capacity(&self) -> usize {
212 self.core.capacity()
213 }
214
215 /// Return a reference to the map's `BuildHasher`.
216 pub fn hasher(&self) -> &S {
217 &self.hash_builder
218 }
219
220 /// Return the number of key-value pairs in the map.
221 ///
222 /// Computes in **O(1)** time.
223 #[inline]
224 pub fn len(&self) -> usize {
225 self.core.len()
226 }
227
228 /// Returns true if the map contains no elements.
229 ///
230 /// Computes in **O(1)** time.
231 #[inline]
232 pub fn is_empty(&self) -> bool {
233 self.len() == 0
234 }
235
236 /// Return an iterator over the key-value pairs of the map, in their order
237 pub fn iter(&self) -> Iter<'_, K, V> {
238 Iter::new(self.as_entries())
239 }
240
241 /// Return an iterator over the key-value pairs of the map, in their order
242 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
243 IterMut::new(self.as_entries_mut())
244 }
245
246 /// Return an iterator over the keys of the map, in their order
247 pub fn keys(&self) -> Keys<'_, K, V> {
248 Keys::new(self.as_entries())
249 }
250
251 /// Return an owning iterator over the keys of the map, in their order
252 pub fn into_keys(self) -> IntoKeys<K, V> {
253 IntoKeys::new(self.into_entries())
254 }
255
256 /// Return an iterator over the values of the map, in their order
257 pub fn values(&self) -> Values<'_, K, V> {
258 Values::new(self.as_entries())
259 }
260
261 /// Return an iterator over mutable references to the values of the map,
262 /// in their order
263 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
264 ValuesMut::new(self.as_entries_mut())
265 }
266
267 /// Return an owning iterator over the values of the map, in their order
268 pub fn into_values(self) -> IntoValues<K, V> {
269 IntoValues::new(self.into_entries())
270 }
271
272 /// Remove all key-value pairs in the map, while preserving its capacity.
273 ///
274 /// Computes in **O(n)** time.
275 pub fn clear(&mut self) {
276 self.core.clear();
277 }
278
279 /// Shortens the map, keeping the first `len` elements and dropping the rest.
280 ///
281 /// If `len` is greater than the map's current length, this has no effect.
282 pub fn truncate(&mut self, len: usize) {
283 self.core.truncate(len);
284 }
285
286 /// Clears the `IndexMap` in the given index range, returning those
287 /// key-value pairs as a drain iterator.
288 ///
289 /// The range may be any type that implements [`RangeBounds<usize>`],
290 /// including all of the `std::ops::Range*` types, or even a tuple pair of
291 /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
292 /// like `map.drain(..)`.
293 ///
294 /// This shifts down all entries following the drained range to fill the
295 /// gap, and keeps the allocated memory for reuse.
296 ///
297 /// ***Panics*** if the starting point is greater than the end point or if
298 /// the end point is greater than the length of the map.
299 #[track_caller]
300 pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
301 where
302 R: RangeBounds<usize>,
303 {
304 Drain::new(self.core.drain(range))
305 }
306
307 /// Creates an iterator which uses a closure to determine if an element should be removed,
308 /// for all elements in the given range.
309 ///
310 /// If the closure returns true, the element is removed from the map and yielded.
311 /// If the closure returns false, or panics, the element remains in the map and will not be
312 /// yielded.
313 ///
314 /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
315 /// whether you choose to keep or remove it.
316 ///
317 /// The range may be any type that implements [`RangeBounds<usize>`],
318 /// including all of the `std::ops::Range*` types, or even a tuple pair of
319 /// `Bound` start and end values. To check the entire map, use `RangeFull`
320 /// like `map.extract_if(.., predicate)`.
321 ///
322 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
323 /// or the iteration short-circuits, then the remaining elements will be retained.
324 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
325 ///
326 /// [`retain`]: IndexMap::retain
327 ///
328 /// ***Panics*** if the starting point is greater than the end point or if
329 /// the end point is greater than the length of the map.
330 ///
331 /// # Examples
332 ///
333 /// Splitting a map into even and odd keys, reusing the original map:
334 ///
335 /// ```
336 /// use indexmap::IndexMap;
337 ///
338 /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
339 /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
340 ///
341 /// let evens = extracted.keys().copied().collect::<Vec<_>>();
342 /// let odds = map.keys().copied().collect::<Vec<_>>();
343 ///
344 /// assert_eq!(evens, vec![0, 2, 4, 6]);
345 /// assert_eq!(odds, vec![1, 3, 5, 7]);
346 /// ```
347 #[track_caller]
348 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
349 where
350 F: FnMut(&K, &mut V) -> bool,
351 R: RangeBounds<usize>,
352 {
353 ExtractIf::new(&mut self.core, range, pred)
354 }
355
356 /// Splits the collection into two at the given index.
357 ///
358 /// Returns a newly allocated map containing the elements in the range
359 /// `[at, len)`. After the call, the original map will be left containing
360 /// the elements `[0, at)` with its previous capacity unchanged.
361 ///
362 /// ***Panics*** if `at > len`.
363 #[track_caller]
364 pub fn split_off(&mut self, at: usize) -> Self
365 where
366 S: Clone,
367 {
368 Self {
369 core: self.core.split_off(at),
370 hash_builder: self.hash_builder.clone(),
371 }
372 }
373
374 /// Reserve capacity for `additional` more key-value pairs.
375 ///
376 /// Computes in **O(n)** time.
377 pub fn reserve(&mut self, additional: usize) {
378 self.core.reserve(additional);
379 }
380
381 /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
382 ///
383 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
384 /// frequent re-allocations. However, the underlying data structures may still have internal
385 /// capacity requirements, and the allocator itself may give more space than requested, so this
386 /// cannot be relied upon to be precisely minimal.
387 ///
388 /// Computes in **O(n)** time.
389 pub fn reserve_exact(&mut self, additional: usize) {
390 self.core.reserve_exact(additional);
391 }
392
393 /// Try to reserve capacity for `additional` more key-value pairs.
394 ///
395 /// Computes in **O(n)** time.
396 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
397 self.core.try_reserve(additional)
398 }
399
400 /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
401 ///
402 /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
403 /// frequent re-allocations. However, the underlying data structures may still have internal
404 /// capacity requirements, and the allocator itself may give more space than requested, so this
405 /// cannot be relied upon to be precisely minimal.
406 ///
407 /// Computes in **O(n)** time.
408 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
409 self.core.try_reserve_exact(additional)
410 }
411
412 /// Shrink the capacity of the map as much as possible.
413 ///
414 /// Computes in **O(n)** time.
415 pub fn shrink_to_fit(&mut self) {
416 self.core.shrink_to(0);
417 }
418
419 /// Shrink the capacity of the map with a lower limit.
420 ///
421 /// Computes in **O(n)** time.
422 pub fn shrink_to(&mut self, min_capacity: usize) {
423 self.core.shrink_to(min_capacity);
424 }
425}
426
427impl<K, V, S> IndexMap<K, V, S>
428where
429 K: Hash + Eq,
430 S: BuildHasher,
431{
432 /// Insert a key-value pair in the map.
433 ///
434 /// If an equivalent key already exists in the map: the key remains and
435 /// retains in its place in the order, its corresponding value is updated
436 /// with `value`, and the older value is returned inside `Some(_)`.
437 ///
438 /// If no equivalent key existed in the map: the new key-value pair is
439 /// inserted, last in order, and `None` is returned.
440 ///
441 /// Computes in **O(1)** time (amortized average).
442 ///
443 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
444 /// or [`insert_full`][Self::insert_full] if you need to get the index of
445 /// the corresponding key-value pair.
446 pub fn insert(&mut self, key: K, value: V) -> Option<V> {
447 self.insert_full(key, value).1
448 }
449
450 /// Insert a key-value pair in the map, and get their index.
451 ///
452 /// If an equivalent key already exists in the map: the key remains and
453 /// retains in its place in the order, its corresponding value is updated
454 /// with `value`, and the older value is returned inside `(index, Some(_))`.
455 ///
456 /// If no equivalent key existed in the map: the new key-value pair is
457 /// inserted, last in order, and `(index, None)` is returned.
458 ///
459 /// Computes in **O(1)** time (amortized average).
460 ///
461 /// See also [`entry`][Self::entry] if you want to insert *or* modify.
462 pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
463 let hash = self.hash(&key);
464 self.core.insert_full(hash, key, value)
465 }
466
467 /// Insert a key-value pair in the map at its ordered position among sorted keys.
468 ///
469 /// This is equivalent to finding the position with
470 /// [`binary_search_keys`][Self::binary_search_keys], then either updating
471 /// it or calling [`insert_before`][Self::insert_before] for a new key.
472 ///
473 /// If the sorted key is found in the map, its corresponding value is
474 /// updated with `value`, and the older value is returned inside
475 /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
476 /// the sorted position, and `(index, None)` is returned.
477 ///
478 /// If the existing keys are **not** already sorted, then the insertion
479 /// index is unspecified (like [`slice::binary_search`]), but the key-value
480 /// pair is moved to or inserted at that position regardless.
481 ///
482 /// Computes in **O(n)** time (average). Instead of repeating calls to
483 /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
484 /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
485 /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
486 pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
487 where
488 K: Ord,
489 {
490 match self.binary_search_keys(&key) {
491 Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
492 Err(i) => self.insert_before(i, key, value),
493 }
494 }
495
496 /// Insert a key-value pair in the map at its ordered position among keys
497 /// sorted by `cmp`.
498 ///
499 /// This is equivalent to finding the position with
500 /// [`binary_search_by`][Self::binary_search_by], then calling
501 /// [`insert_before`][Self::insert_before] with the given key and value.
502 ///
503 /// If the existing keys are **not** already sorted, then the insertion
504 /// index is unspecified (like [`slice::binary_search`]), but the key-value
505 /// pair is moved to or inserted at that position regardless.
506 ///
507 /// Computes in **O(n)** time (average).
508 pub fn insert_sorted_by<F>(&mut self, key: K, value: V, mut cmp: F) -> (usize, Option<V>)
509 where
510 F: FnMut(&K, &V, &K, &V) -> Ordering,
511 {
512 let (Ok(i) | Err(i)) = self.binary_search_by(|k, v| cmp(k, v, &key, &value));
513 self.insert_before(i, key, value)
514 }
515
516 /// Insert a key-value pair in the map at its ordered position
517 /// using a sort-key extraction function.
518 ///
519 /// This is equivalent to finding the position with
520 /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, then
521 /// calling [`insert_before`][Self::insert_before] with the given key and value.
522 ///
523 /// If the existing keys are **not** already sorted, then the insertion
524 /// index is unspecified (like [`slice::binary_search`]), but the key-value
525 /// pair is moved to or inserted at that position regardless.
526 ///
527 /// Computes in **O(n)** time (average).
528 pub fn insert_sorted_by_key<B, F>(
529 &mut self,
530 key: K,
531 value: V,
532 mut sort_key: F,
533 ) -> (usize, Option<V>)
534 where
535 B: Ord,
536 F: FnMut(&K, &V) -> B,
537 {
538 let search_key = sort_key(&key, &value);
539 let (Ok(i) | Err(i)) = self.binary_search_by_key(&search_key, sort_key);
540 self.insert_before(i, key, value)
541 }
542
543 /// Insert a key-value pair in the map before the entry at the given index, or at the end.
544 ///
545 /// If an equivalent key already exists in the map: the key remains and
546 /// is moved to the new position in the map, its corresponding value is updated
547 /// with `value`, and the older value is returned inside `Some(_)`. The returned index
548 /// will either be the given index or one less, depending on how the entry moved.
549 /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
550 ///
551 /// If no equivalent key existed in the map: the new key-value pair is
552 /// inserted exactly at the given index, and `None` is returned.
553 ///
554 /// ***Panics*** if `index` is out of bounds.
555 /// Valid indices are `0..=map.len()` (inclusive).
556 ///
557 /// Computes in **O(n)** time (average).
558 ///
559 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
560 /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
561 ///
562 /// # Examples
563 ///
564 /// ```
565 /// use indexmap::IndexMap;
566 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
567 ///
568 /// // The new key '*' goes exactly at the given index.
569 /// assert_eq!(map.get_index_of(&'*'), None);
570 /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
571 /// assert_eq!(map.get_index_of(&'*'), Some(10));
572 ///
573 /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
574 /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
575 /// assert_eq!(map.get_index_of(&'a'), Some(9));
576 /// assert_eq!(map.get_index_of(&'*'), Some(10));
577 ///
578 /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
579 /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
580 /// assert_eq!(map.get_index_of(&'z'), Some(10));
581 /// assert_eq!(map.get_index_of(&'*'), Some(11));
582 ///
583 /// // Moving or inserting before the endpoint is also valid.
584 /// assert_eq!(map.len(), 27);
585 /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
586 /// assert_eq!(map.get_index_of(&'*'), Some(26));
587 /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
588 /// assert_eq!(map.get_index_of(&'+'), Some(27));
589 /// assert_eq!(map.len(), 28);
590 /// ```
591 #[track_caller]
592 pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
593 let len = self.len();
594
595 assert!(
596 index <= len,
597 "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
598 );
599
600 match self.entry(key) {
601 Entry::Occupied(mut entry) => {
602 if index > entry.index() {
603 // Some entries will shift down when this one moves up,
604 // so "insert before index" becomes "move to index - 1",
605 // keeping the entry at the original index unmoved.
606 index -= 1;
607 }
608 let old = mem::replace(entry.get_mut(), value);
609 entry.move_index(index);
610 (index, Some(old))
611 }
612 Entry::Vacant(entry) => {
613 entry.shift_insert(index, value);
614 (index, None)
615 }
616 }
617 }
618
619 /// Insert a key-value pair in the map at the given index.
620 ///
621 /// If an equivalent key already exists in the map: the key remains and
622 /// is moved to the given index in the map, its corresponding value is updated
623 /// with `value`, and the older value is returned inside `Some(_)`.
624 /// Note that existing entries **cannot** be moved to `index == map.len()`!
625 /// (See [`insert_before`](Self::insert_before) for different behavior here.)
626 ///
627 /// If no equivalent key existed in the map: the new key-value pair is
628 /// inserted at the given index, and `None` is returned.
629 ///
630 /// ***Panics*** if `index` is out of bounds.
631 /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
632 /// `0..=map.len()` (inclusive) when inserting a new key.
633 ///
634 /// Computes in **O(n)** time (average).
635 ///
636 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
637 /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
638 ///
639 /// # Examples
640 ///
641 /// ```
642 /// use indexmap::IndexMap;
643 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
644 ///
645 /// // The new key '*' goes exactly at the given index.
646 /// assert_eq!(map.get_index_of(&'*'), None);
647 /// assert_eq!(map.shift_insert(10, '*', ()), None);
648 /// assert_eq!(map.get_index_of(&'*'), Some(10));
649 ///
650 /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
651 /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
652 /// assert_eq!(map.get_index_of(&'a'), Some(10));
653 /// assert_eq!(map.get_index_of(&'*'), Some(9));
654 ///
655 /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
656 /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
657 /// assert_eq!(map.get_index_of(&'z'), Some(9));
658 /// assert_eq!(map.get_index_of(&'*'), Some(10));
659 ///
660 /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
661 /// assert_eq!(map.len(), 27);
662 /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
663 /// assert_eq!(map.get_index_of(&'*'), Some(26));
664 /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
665 /// assert_eq!(map.get_index_of(&'+'), Some(27));
666 /// assert_eq!(map.len(), 28);
667 /// ```
668 ///
669 /// ```should_panic
670 /// use indexmap::IndexMap;
671 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
672 ///
673 /// // This is an invalid index for moving an existing key!
674 /// map.shift_insert(map.len(), 'a', ());
675 /// ```
676 #[track_caller]
677 pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
678 let len = self.len();
679 match self.entry(key) {
680 Entry::Occupied(mut entry) => {
681 assert!(
682 index < len,
683 "index out of bounds: the len is {len} but the index is {index}"
684 );
685
686 let old = mem::replace(entry.get_mut(), value);
687 entry.move_index(index);
688 Some(old)
689 }
690 Entry::Vacant(entry) => {
691 assert!(
692 index <= len,
693 "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
694 );
695
696 entry.shift_insert(index, value);
697 None
698 }
699 }
700 }
701
702 /// Replaces the key at the given index. The new key does not need to be
703 /// equivalent to the one it is replacing, but it must be unique to the rest
704 /// of the map.
705 ///
706 /// Returns `Ok(old_key)` if successful, or `Err((other_index, key))` if an
707 /// equivalent key already exists at a different index. The map will be
708 /// unchanged in the error case.
709 ///
710 /// Direct indexing can be used to change the corresponding value: simply
711 /// `map[index] = value`, or `mem::replace(&mut map[index], value)` to
712 /// retrieve the old value as well.
713 ///
714 /// ***Panics*** if `index` is out of bounds.
715 ///
716 /// Computes in **O(1)** time (average).
717 #[track_caller]
718 pub fn replace_index(&mut self, index: usize, key: K) -> Result<K, (usize, K)> {
719 // If there's a direct match, we don't even need to hash it.
720 let entry = &mut self.as_entries_mut()[index];
721 if key == entry.key {
722 return Ok(mem::replace(&mut entry.key, key));
723 }
724
725 let hash = self.hash(&key);
726 if let Some(i) = self.core.get_index_of(hash, &key) {
727 debug_assert_ne!(i, index);
728 return Err((i, key));
729 }
730 Ok(self.core.replace_index_unique(index, hash, key))
731 }
732
733 /// Get the given key's corresponding entry in the map for insertion and/or
734 /// in-place manipulation.
735 ///
736 /// Computes in **O(1)** time (amortized average).
737 pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
738 let hash = self.hash(&key);
739 self.core.entry(hash, key)
740 }
741
742 /// Creates a splicing iterator that replaces the specified range in the map
743 /// with the given `replace_with` key-value iterator and yields the removed
744 /// items. `replace_with` does not need to be the same length as `range`.
745 ///
746 /// The `range` is removed even if the iterator is not consumed until the
747 /// end. It is unspecified how many elements are removed from the map if the
748 /// `Splice` value is leaked.
749 ///
750 /// The input iterator `replace_with` is only consumed when the `Splice`
751 /// value is dropped. If a key from the iterator matches an existing entry
752 /// in the map (outside of `range`), then the value will be updated in that
753 /// position. Otherwise, the new key-value pair will be inserted in the
754 /// replaced `range`.
755 ///
756 /// ***Panics*** if the starting point is greater than the end point or if
757 /// the end point is greater than the length of the map.
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// use indexmap::IndexMap;
763 ///
764 /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
765 /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
766 /// let removed: Vec<_> = map.splice(2..4, new).collect();
767 ///
768 /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
769 /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
770 /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
771 /// ```
772 #[track_caller]
773 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
774 where
775 R: RangeBounds<usize>,
776 I: IntoIterator<Item = (K, V)>,
777 {
778 Splice::new(self, range, replace_with.into_iter())
779 }
780
781 /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
782 ///
783 /// This is equivalent to calling [`insert`][Self::insert] for each
784 /// key-value pair from `other` in order, which means that for keys that
785 /// already exist in `self`, their value is updated in the current position.
786 ///
787 /// # Examples
788 ///
789 /// ```
790 /// use indexmap::IndexMap;
791 ///
792 /// // Note: Key (3) is present in both maps.
793 /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
794 /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
795 /// let old_capacity = b.capacity();
796 ///
797 /// a.append(&mut b);
798 ///
799 /// assert_eq!(a.len(), 5);
800 /// assert_eq!(b.len(), 0);
801 /// assert_eq!(b.capacity(), old_capacity);
802 ///
803 /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
804 /// assert_eq!(a[&3], "d"); // "c" was overwritten.
805 /// ```
806 pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
807 self.extend(other.drain(..));
808 }
809}
810
811impl<K, V, S> IndexMap<K, V, S>
812where
813 S: BuildHasher,
814{
815 pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
816 let mut h = self.hash_builder.build_hasher();
817 key.hash(&mut h);
818 HashValue(h.finish() as usize)
819 }
820
821 /// Return `true` if an equivalent to `key` exists in the map.
822 ///
823 /// Computes in **O(1)** time (average).
824 pub fn contains_key<Q>(&self, key: &Q) -> bool
825 where
826 Q: ?Sized + Hash + Equivalent<K>,
827 {
828 self.get_index_of(key).is_some()
829 }
830
831 /// Return a reference to the stored value for `key`, if it is present,
832 /// else `None`.
833 ///
834 /// Computes in **O(1)** time (average).
835 pub fn get<Q>(&self, key: &Q) -> Option<&V>
836 where
837 Q: ?Sized + Hash + Equivalent<K>,
838 {
839 if let Some(i) = self.get_index_of(key) {
840 let entry = &self.as_entries()[i];
841 Some(&entry.value)
842 } else {
843 None
844 }
845 }
846
847 /// Return references to the stored key-value pair for the lookup `key`,
848 /// if it is present, else `None`.
849 ///
850 /// Computes in **O(1)** time (average).
851 pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
852 where
853 Q: ?Sized + Hash + Equivalent<K>,
854 {
855 if let Some(i) = self.get_index_of(key) {
856 let entry = &self.as_entries()[i];
857 Some((&entry.key, &entry.value))
858 } else {
859 None
860 }
861 }
862
863 /// Return the index with references to the stored key-value pair for the
864 /// lookup `key`, if it is present, else `None`.
865 ///
866 /// Computes in **O(1)** time (average).
867 pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
868 where
869 Q: ?Sized + Hash + Equivalent<K>,
870 {
871 if let Some(i) = self.get_index_of(key) {
872 let entry = &self.as_entries()[i];
873 Some((i, &entry.key, &entry.value))
874 } else {
875 None
876 }
877 }
878
879 /// Return the item index for `key`, if it is present, else `None`.
880 ///
881 /// Computes in **O(1)** time (average).
882 pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
883 where
884 Q: ?Sized + Hash + Equivalent<K>,
885 {
886 match self.as_entries() {
887 [] => None,
888 [x] => key.equivalent(&x.key).then_some(0),
889 _ => {
890 let hash = self.hash(key);
891 self.core.get_index_of(hash, key)
892 }
893 }
894 }
895
896 /// Return a mutable reference to the stored value for `key`,
897 /// if it is present, else `None`.
898 ///
899 /// Computes in **O(1)** time (average).
900 pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
901 where
902 Q: ?Sized + Hash + Equivalent<K>,
903 {
904 if let Some(i) = self.get_index_of(key) {
905 let entry = &mut self.as_entries_mut()[i];
906 Some(&mut entry.value)
907 } else {
908 None
909 }
910 }
911
912 /// Return a reference and mutable references to the stored key-value pair
913 /// for the lookup `key`, if it is present, else `None`.
914 ///
915 /// Computes in **O(1)** time (average).
916 pub fn get_key_value_mut<Q>(&mut self, key: &Q) -> Option<(&K, &mut V)>
917 where
918 Q: ?Sized + Hash + Equivalent<K>,
919 {
920 if let Some(i) = self.get_index_of(key) {
921 let entry = &mut self.as_entries_mut()[i];
922 Some((&entry.key, &mut entry.value))
923 } else {
924 None
925 }
926 }
927
928 /// Return the index with a reference and mutable reference to the stored
929 /// key-value pair for the lookup `key`, if it is present, else `None`.
930 ///
931 /// Computes in **O(1)** time (average).
932 pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
933 where
934 Q: ?Sized + Hash + Equivalent<K>,
935 {
936 if let Some(i) = self.get_index_of(key) {
937 let entry = &mut self.as_entries_mut()[i];
938 Some((i, &entry.key, &mut entry.value))
939 } else {
940 None
941 }
942 }
943
944 /// Return the values for `N` keys. If any key is duplicated, this function will panic.
945 ///
946 /// # Examples
947 ///
948 /// ```
949 /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
950 /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
951 /// ```
952 pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
953 where
954 Q: ?Sized + Hash + Equivalent<K>,
955 {
956 let indices = keys.map(|key| self.get_index_of(key));
957 match self.as_mut_slice().get_disjoint_opt_mut(indices) {
958 Err(GetDisjointMutError::IndexOutOfBounds) => {
959 unreachable!(
960 "Internal error: indices should never be OOB as we got them from get_index_of"
961 );
962 }
963 Err(GetDisjointMutError::OverlappingIndices) => {
964 panic!("duplicate keys found");
965 }
966 Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
967 }
968 }
969
970 /// Remove the key-value pair equivalent to `key` and return
971 /// its value.
972 ///
973 /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
974 /// entry's position with the last element, and it is deprecated in favor of calling that
975 /// explicitly. If you need to preserve the relative order of the keys in the map, use
976 /// [`.shift_remove(key)`][Self::shift_remove] instead.
977 #[deprecated(note = "`remove` disrupts the map order -- \
978 use `swap_remove` or `shift_remove` for explicit behavior.")]
979 pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
980 where
981 Q: ?Sized + Hash + Equivalent<K>,
982 {
983 self.swap_remove(key)
984 }
985
986 /// Remove and return the key-value pair equivalent to `key`.
987 ///
988 /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
989 /// replacing this entry's position with the last element, and it is deprecated in favor of
990 /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
991 /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
992 #[deprecated(note = "`remove_entry` disrupts the map order -- \
993 use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
994 pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
995 where
996 Q: ?Sized + Hash + Equivalent<K>,
997 {
998 self.swap_remove_entry(key)
999 }
1000
1001 /// Remove the key-value pair equivalent to `key` and return
1002 /// its value.
1003 ///
1004 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1005 /// last element of the map and popping it off. **This perturbs
1006 /// the position of what used to be the last element!**
1007 ///
1008 /// Return `None` if `key` is not in map.
1009 ///
1010 /// Computes in **O(1)** time (average).
1011 pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
1012 where
1013 Q: ?Sized + Hash + Equivalent<K>,
1014 {
1015 self.swap_remove_full(key).map(third)
1016 }
1017
1018 /// Remove and return the key-value pair equivalent to `key`.
1019 ///
1020 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1021 /// last element of the map and popping it off. **This perturbs
1022 /// the position of what used to be the last element!**
1023 ///
1024 /// Return `None` if `key` is not in map.
1025 ///
1026 /// Computes in **O(1)** time (average).
1027 pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1028 where
1029 Q: ?Sized + Hash + Equivalent<K>,
1030 {
1031 match self.swap_remove_full(key) {
1032 Some((_, key, value)) => Some((key, value)),
1033 None => None,
1034 }
1035 }
1036
1037 /// Remove the key-value pair equivalent to `key` and return it and
1038 /// the index it had.
1039 ///
1040 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1041 /// last element of the map and popping it off. **This perturbs
1042 /// the position of what used to be the last element!**
1043 ///
1044 /// Return `None` if `key` is not in map.
1045 ///
1046 /// Computes in **O(1)** time (average).
1047 pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1048 where
1049 Q: ?Sized + Hash + Equivalent<K>,
1050 {
1051 match self.as_entries() {
1052 [x] if key.equivalent(&x.key) => {
1053 let (k, v) = self.core.pop()?;
1054 Some((0, k, v))
1055 }
1056 [_] | [] => None,
1057 _ => {
1058 let hash = self.hash(key);
1059 self.core.swap_remove_full(hash, key)
1060 }
1061 }
1062 }
1063
1064 /// Remove the key-value pair equivalent to `key` and return
1065 /// its value.
1066 ///
1067 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1068 /// elements that follow it, preserving their relative order.
1069 /// **This perturbs the index of all of those elements!**
1070 ///
1071 /// Return `None` if `key` is not in map.
1072 ///
1073 /// Computes in **O(n)** time (average).
1074 pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
1075 where
1076 Q: ?Sized + Hash + Equivalent<K>,
1077 {
1078 self.shift_remove_full(key).map(third)
1079 }
1080
1081 /// Remove and return the key-value pair equivalent to `key`.
1082 ///
1083 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1084 /// elements that follow it, preserving their relative order.
1085 /// **This perturbs the index of all of those elements!**
1086 ///
1087 /// Return `None` if `key` is not in map.
1088 ///
1089 /// Computes in **O(n)** time (average).
1090 pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1091 where
1092 Q: ?Sized + Hash + Equivalent<K>,
1093 {
1094 match self.shift_remove_full(key) {
1095 Some((_, key, value)) => Some((key, value)),
1096 None => None,
1097 }
1098 }
1099
1100 /// Remove the key-value pair equivalent to `key` and return it and
1101 /// the index it had.
1102 ///
1103 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1104 /// elements that follow it, preserving their relative order.
1105 /// **This perturbs the index of all of those elements!**
1106 ///
1107 /// Return `None` if `key` is not in map.
1108 ///
1109 /// Computes in **O(n)** time (average).
1110 pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1111 where
1112 Q: ?Sized + Hash + Equivalent<K>,
1113 {
1114 match self.as_entries() {
1115 [x] if key.equivalent(&x.key) => {
1116 let (k, v) = self.core.pop()?;
1117 Some((0, k, v))
1118 }
1119 [_] | [] => None,
1120 _ => {
1121 let hash = self.hash(key);
1122 self.core.shift_remove_full(hash, key)
1123 }
1124 }
1125 }
1126}
1127
1128impl<K, V, S> IndexMap<K, V, S> {
1129 /// Remove the last key-value pair
1130 ///
1131 /// This preserves the order of the remaining elements.
1132 ///
1133 /// Computes in **O(1)** time (average).
1134 #[doc(alias = "pop_last")] // like `BTreeMap`
1135 pub fn pop(&mut self) -> Option<(K, V)> {
1136 self.core.pop()
1137 }
1138
1139 /// Scan through each key-value pair in the map and keep those where the
1140 /// closure `keep` returns `true`.
1141 ///
1142 /// The elements are visited in order, and remaining elements keep their
1143 /// order.
1144 ///
1145 /// Computes in **O(n)** time (average).
1146 pub fn retain<F>(&mut self, mut keep: F)
1147 where
1148 F: FnMut(&K, &mut V) -> bool,
1149 {
1150 self.core.retain_in_order(move |k, v| keep(k, v));
1151 }
1152
1153 /// Sort the map's key-value pairs by the default ordering of the keys.
1154 ///
1155 /// This is a stable sort -- but equivalent keys should not normally coexist in
1156 /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1157 /// because it is generally faster and doesn't allocate auxiliary memory.
1158 ///
1159 /// See [`sort_by`](Self::sort_by) for details.
1160 pub fn sort_keys(&mut self)
1161 where
1162 K: Ord,
1163 {
1164 self.with_entries(move |entries| {
1165 entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1166 });
1167 }
1168
1169 /// Sort the map's key-value pairs in place using the comparison
1170 /// function `cmp`.
1171 ///
1172 /// The comparison function receives two key and value pairs to compare (you
1173 /// can sort by keys or values or their combination as needed).
1174 ///
1175 /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1176 /// the length of the map and *c* the capacity. The sort is stable.
1177 pub fn sort_by<F>(&mut self, mut cmp: F)
1178 where
1179 F: FnMut(&K, &V, &K, &V) -> Ordering,
1180 {
1181 self.with_entries(move |entries| {
1182 entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1183 });
1184 }
1185
1186 /// Sort the key-value pairs of the map and return a by-value iterator of
1187 /// the key-value pairs with the result.
1188 ///
1189 /// The sort is stable.
1190 pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1191 where
1192 F: FnMut(&K, &V, &K, &V) -> Ordering,
1193 {
1194 let mut entries = self.into_entries();
1195 entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1196 IntoIter::new(entries)
1197 }
1198
1199 /// Sort the map's key-value pairs in place using a sort-key extraction function.
1200 ///
1201 /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1202 /// the length of the map and *c* the capacity. The sort is stable.
1203 pub fn sort_by_key<T, F>(&mut self, mut sort_key: F)
1204 where
1205 T: Ord,
1206 F: FnMut(&K, &V) -> T,
1207 {
1208 self.with_entries(move |entries| {
1209 entries.sort_by_key(move |a| sort_key(&a.key, &a.value));
1210 });
1211 }
1212
1213 /// Sort the map's key-value pairs by the default ordering of the keys, but
1214 /// may not preserve the order of equal elements.
1215 ///
1216 /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1217 pub fn sort_unstable_keys(&mut self)
1218 where
1219 K: Ord,
1220 {
1221 self.with_entries(move |entries| {
1222 entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1223 });
1224 }
1225
1226 /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1227 /// may not preserve the order of equal elements.
1228 ///
1229 /// The comparison function receives two key and value pairs to compare (you
1230 /// can sort by keys or values or their combination as needed).
1231 ///
1232 /// Computes in **O(n log n + c)** time where *n* is
1233 /// the length of the map and *c* is the capacity. The sort is unstable.
1234 pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1235 where
1236 F: FnMut(&K, &V, &K, &V) -> Ordering,
1237 {
1238 self.with_entries(move |entries| {
1239 entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1240 });
1241 }
1242
1243 /// Sort the key-value pairs of the map and return a by-value iterator of
1244 /// the key-value pairs with the result.
1245 ///
1246 /// The sort is unstable.
1247 #[inline]
1248 pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1249 where
1250 F: FnMut(&K, &V, &K, &V) -> Ordering,
1251 {
1252 let mut entries = self.into_entries();
1253 entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1254 IntoIter::new(entries)
1255 }
1256
1257 /// Sort the map's key-value pairs in place using a sort-key extraction function.
1258 ///
1259 /// Computes in **O(n log n + c)** time where *n* is
1260 /// the length of the map and *c* is the capacity. The sort is unstable.
1261 pub fn sort_unstable_by_key<T, F>(&mut self, mut sort_key: F)
1262 where
1263 T: Ord,
1264 F: FnMut(&K, &V) -> T,
1265 {
1266 self.with_entries(move |entries| {
1267 entries.sort_unstable_by_key(move |a| sort_key(&a.key, &a.value));
1268 });
1269 }
1270
1271 /// Sort the map's key-value pairs in place using a sort-key extraction function.
1272 ///
1273 /// During sorting, the function is called at most once per entry, by using temporary storage
1274 /// to remember the results of its evaluation. The order of calls to the function is
1275 /// unspecified and may change between versions of `indexmap` or the standard library.
1276 ///
1277 /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1278 /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1279 pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1280 where
1281 T: Ord,
1282 F: FnMut(&K, &V) -> T,
1283 {
1284 self.with_entries(move |entries| {
1285 entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1286 });
1287 }
1288
1289 /// Search over a sorted map for a key.
1290 ///
1291 /// Returns the position where that key is present, or the position where it can be inserted to
1292 /// maintain the sort. See [`slice::binary_search`] for more details.
1293 ///
1294 /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1295 /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1296 pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1297 where
1298 K: Ord,
1299 {
1300 self.as_slice().binary_search_keys(x)
1301 }
1302
1303 /// Search over a sorted map with a comparator function.
1304 ///
1305 /// Returns the position where that value is present, or the position where it can be inserted
1306 /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1307 ///
1308 /// Computes in **O(log(n))** time.
1309 #[inline]
1310 pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1311 where
1312 F: FnMut(&'a K, &'a V) -> Ordering,
1313 {
1314 self.as_slice().binary_search_by(f)
1315 }
1316
1317 /// Search over a sorted map with an extraction function.
1318 ///
1319 /// Returns the position where that value is present, or the position where it can be inserted
1320 /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1321 ///
1322 /// Computes in **O(log(n))** time.
1323 #[inline]
1324 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1325 where
1326 F: FnMut(&'a K, &'a V) -> B,
1327 B: Ord,
1328 {
1329 self.as_slice().binary_search_by_key(b, f)
1330 }
1331
1332 /// Checks if the keys of this map are sorted.
1333 #[inline]
1334 pub fn is_sorted(&self) -> bool
1335 where
1336 K: PartialOrd,
1337 {
1338 self.as_slice().is_sorted()
1339 }
1340
1341 /// Checks if this map is sorted using the given comparator function.
1342 #[inline]
1343 pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1344 where
1345 F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool,
1346 {
1347 self.as_slice().is_sorted_by(cmp)
1348 }
1349
1350 /// Checks if this map is sorted using the given sort-key function.
1351 #[inline]
1352 pub fn is_sorted_by_key<'a, F, T>(&'a self, sort_key: F) -> bool
1353 where
1354 F: FnMut(&'a K, &'a V) -> T,
1355 T: PartialOrd,
1356 {
1357 self.as_slice().is_sorted_by_key(sort_key)
1358 }
1359
1360 /// Returns the index of the partition point of a sorted map according to the given predicate
1361 /// (the index of the first element of the second partition).
1362 ///
1363 /// See [`slice::partition_point`] for more details.
1364 ///
1365 /// Computes in **O(log(n))** time.
1366 #[must_use]
1367 pub fn partition_point<P>(&self, pred: P) -> usize
1368 where
1369 P: FnMut(&K, &V) -> bool,
1370 {
1371 self.as_slice().partition_point(pred)
1372 }
1373
1374 /// Reverses the order of the map's key-value pairs in place.
1375 ///
1376 /// Computes in **O(n)** time and **O(1)** space.
1377 pub fn reverse(&mut self) {
1378 self.core.reverse()
1379 }
1380
1381 /// Returns a slice of all the key-value pairs in the map.
1382 ///
1383 /// Computes in **O(1)** time.
1384 pub fn as_slice(&self) -> &Slice<K, V> {
1385 Slice::from_slice(self.as_entries())
1386 }
1387
1388 /// Returns a mutable slice of all the key-value pairs in the map.
1389 ///
1390 /// Computes in **O(1)** time.
1391 pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1392 Slice::from_mut_slice(self.as_entries_mut())
1393 }
1394
1395 /// Converts into a boxed slice of all the key-value pairs in the map.
1396 ///
1397 /// Note that this will drop the inner hash table and any excess capacity.
1398 pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1399 Slice::from_boxed(self.into_entries().into_boxed_slice())
1400 }
1401
1402 /// Get a key-value pair by index
1403 ///
1404 /// Valid indices are `0 <= index < self.len()`.
1405 ///
1406 /// Computes in **O(1)** time.
1407 pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1408 self.as_entries().get(index).map(Bucket::refs)
1409 }
1410
1411 /// Get a key-value pair by index
1412 ///
1413 /// Valid indices are `0 <= index < self.len()`.
1414 ///
1415 /// Computes in **O(1)** time.
1416 pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1417 self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1418 }
1419
1420 /// Get an entry in the map by index for in-place manipulation.
1421 ///
1422 /// Valid indices are `0 <= index < self.len()`.
1423 ///
1424 /// Computes in **O(1)** time.
1425 pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1426 if index >= self.len() {
1427 return None;
1428 }
1429 Some(IndexedEntry::new(&mut self.core, index))
1430 }
1431
1432 /// Get an array of `N` key-value pairs by `N` indices
1433 ///
1434 /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1435 ///
1436 /// # Examples
1437 ///
1438 /// ```
1439 /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1440 /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1441 /// ```
1442 pub fn get_disjoint_indices_mut<const N: usize>(
1443 &mut self,
1444 indices: [usize; N],
1445 ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1446 self.as_mut_slice().get_disjoint_mut(indices)
1447 }
1448
1449 /// Returns a slice of key-value pairs in the given range of indices.
1450 ///
1451 /// Valid indices are `0 <= index < self.len()`.
1452 ///
1453 /// Computes in **O(1)** time.
1454 pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1455 let entries = self.as_entries();
1456 let range = try_simplify_range(range, entries.len())?;
1457 entries.get(range).map(Slice::from_slice)
1458 }
1459
1460 /// Returns a mutable slice of key-value pairs in the given range of indices.
1461 ///
1462 /// Valid indices are `0 <= index < self.len()`.
1463 ///
1464 /// Computes in **O(1)** time.
1465 pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1466 let entries = self.as_entries_mut();
1467 let range = try_simplify_range(range, entries.len())?;
1468 entries.get_mut(range).map(Slice::from_mut_slice)
1469 }
1470
1471 /// Get the first key-value pair
1472 ///
1473 /// Computes in **O(1)** time.
1474 #[doc(alias = "first_key_value")] // like `BTreeMap`
1475 pub fn first(&self) -> Option<(&K, &V)> {
1476 self.as_entries().first().map(Bucket::refs)
1477 }
1478
1479 /// Get the first key-value pair, with mutable access to the value
1480 ///
1481 /// Computes in **O(1)** time.
1482 pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1483 self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1484 }
1485
1486 /// Get the first entry in the map for in-place manipulation.
1487 ///
1488 /// Computes in **O(1)** time.
1489 pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1490 self.get_index_entry(0)
1491 }
1492
1493 /// Get the last key-value pair
1494 ///
1495 /// Computes in **O(1)** time.
1496 #[doc(alias = "last_key_value")] // like `BTreeMap`
1497 pub fn last(&self) -> Option<(&K, &V)> {
1498 self.as_entries().last().map(Bucket::refs)
1499 }
1500
1501 /// Get the last key-value pair, with mutable access to the value
1502 ///
1503 /// Computes in **O(1)** time.
1504 pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1505 self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1506 }
1507
1508 /// Get the last entry in the map for in-place manipulation.
1509 ///
1510 /// Computes in **O(1)** time.
1511 pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1512 self.get_index_entry(self.len().checked_sub(1)?)
1513 }
1514
1515 /// Remove the key-value pair by index
1516 ///
1517 /// Valid indices are `0 <= index < self.len()`.
1518 ///
1519 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1520 /// last element of the map and popping it off. **This perturbs
1521 /// the position of what used to be the last element!**
1522 ///
1523 /// Computes in **O(1)** time (average).
1524 pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1525 self.core.swap_remove_index(index)
1526 }
1527
1528 /// Remove the key-value pair by index
1529 ///
1530 /// Valid indices are `0 <= index < self.len()`.
1531 ///
1532 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1533 /// elements that follow it, preserving their relative order.
1534 /// **This perturbs the index of all of those elements!**
1535 ///
1536 /// Computes in **O(n)** time (average).
1537 pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1538 self.core.shift_remove_index(index)
1539 }
1540
1541 /// Moves the position of a key-value pair from one index to another
1542 /// by shifting all other pairs in-between.
1543 ///
1544 /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1545 /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1546 ///
1547 /// ***Panics*** if `from` or `to` are out of bounds.
1548 ///
1549 /// Computes in **O(n)** time (average).
1550 #[track_caller]
1551 pub fn move_index(&mut self, from: usize, to: usize) {
1552 self.core.move_index(from, to)
1553 }
1554
1555 /// Swaps the position of two key-value pairs in the map.
1556 ///
1557 /// ***Panics*** if `a` or `b` are out of bounds.
1558 ///
1559 /// Computes in **O(1)** time (average).
1560 #[track_caller]
1561 pub fn swap_indices(&mut self, a: usize, b: usize) {
1562 self.core.swap_indices(a, b)
1563 }
1564}
1565
1566/// Access [`IndexMap`] values corresponding to a key.
1567///
1568/// # Examples
1569///
1570/// ```
1571/// use indexmap::IndexMap;
1572///
1573/// let mut map = IndexMap::new();
1574/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1575/// map.insert(word.to_lowercase(), word.to_uppercase());
1576/// }
1577/// assert_eq!(map["lorem"], "LOREM");
1578/// assert_eq!(map["ipsum"], "IPSUM");
1579/// ```
1580///
1581/// ```should_panic
1582/// use indexmap::IndexMap;
1583///
1584/// let mut map = IndexMap::new();
1585/// map.insert("foo", 1);
1586/// println!("{:?}", map["bar"]); // panics!
1587/// ```
1588impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1589where
1590 Q: Hash + Equivalent<K>,
1591 S: BuildHasher,
1592{
1593 type Output = V;
1594
1595 /// Returns a reference to the value corresponding to the supplied `key`.
1596 ///
1597 /// ***Panics*** if `key` is not present in the map.
1598 fn index(&self, key: &Q) -> &V {
1599 self.get(key).expect("no entry found for key")
1600 }
1601}
1602
1603/// Access [`IndexMap`] values corresponding to a key.
1604///
1605/// Mutable indexing allows changing / updating values of key-value
1606/// pairs that are already present.
1607///
1608/// You can **not** insert new pairs with index syntax, use `.insert()`.
1609///
1610/// # Examples
1611///
1612/// ```
1613/// use indexmap::IndexMap;
1614///
1615/// let mut map = IndexMap::new();
1616/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1617/// map.insert(word.to_lowercase(), word.to_string());
1618/// }
1619/// let lorem = &mut map["lorem"];
1620/// assert_eq!(lorem, "Lorem");
1621/// lorem.retain(char::is_lowercase);
1622/// assert_eq!(map["lorem"], "orem");
1623/// ```
1624///
1625/// ```should_panic
1626/// use indexmap::IndexMap;
1627///
1628/// let mut map = IndexMap::new();
1629/// map.insert("foo", 1);
1630/// map["bar"] = 1; // panics!
1631/// ```
1632impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1633where
1634 Q: Hash + Equivalent<K>,
1635 S: BuildHasher,
1636{
1637 /// Returns a mutable reference to the value corresponding to the supplied `key`.
1638 ///
1639 /// ***Panics*** if `key` is not present in the map.
1640 fn index_mut(&mut self, key: &Q) -> &mut V {
1641 self.get_mut(key).expect("no entry found for key")
1642 }
1643}
1644
1645/// Access [`IndexMap`] values at indexed positions.
1646///
1647/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1648///
1649/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1650///
1651/// # Examples
1652///
1653/// ```
1654/// use indexmap::IndexMap;
1655///
1656/// let mut map = IndexMap::new();
1657/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1658/// map.insert(word.to_lowercase(), word.to_uppercase());
1659/// }
1660/// assert_eq!(map[0], "LOREM");
1661/// assert_eq!(map[1], "IPSUM");
1662/// map.reverse();
1663/// assert_eq!(map[0], "AMET");
1664/// assert_eq!(map[1], "SIT");
1665/// map.sort_keys();
1666/// assert_eq!(map[0], "AMET");
1667/// assert_eq!(map[1], "DOLOR");
1668/// ```
1669///
1670/// ```should_panic
1671/// use indexmap::IndexMap;
1672///
1673/// let mut map = IndexMap::new();
1674/// map.insert("foo", 1);
1675/// println!("{:?}", map[10]); // panics!
1676/// ```
1677impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1678 type Output = V;
1679
1680 /// Returns a reference to the value at the supplied `index`.
1681 ///
1682 /// ***Panics*** if `index` is out of bounds.
1683 fn index(&self, index: usize) -> &V {
1684 if let Some((_, value)) = self.get_index(index) {
1685 value
1686 } else {
1687 panic!(
1688 "index out of bounds: the len is {len} but the index is {index}",
1689 len = self.len()
1690 );
1691 }
1692 }
1693}
1694
1695/// Access [`IndexMap`] values at indexed positions.
1696///
1697/// Mutable indexing allows changing / updating indexed values
1698/// that are already present.
1699///
1700/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1701///
1702/// # Examples
1703///
1704/// ```
1705/// use indexmap::IndexMap;
1706///
1707/// let mut map = IndexMap::new();
1708/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1709/// map.insert(word.to_lowercase(), word.to_string());
1710/// }
1711/// let lorem = &mut map[0];
1712/// assert_eq!(lorem, "Lorem");
1713/// lorem.retain(char::is_lowercase);
1714/// assert_eq!(map["lorem"], "orem");
1715/// ```
1716///
1717/// ```should_panic
1718/// use indexmap::IndexMap;
1719///
1720/// let mut map = IndexMap::new();
1721/// map.insert("foo", 1);
1722/// map[10] = 1; // panics!
1723/// ```
1724impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1725 /// Returns a mutable reference to the value at the supplied `index`.
1726 ///
1727 /// ***Panics*** if `index` is out of bounds.
1728 fn index_mut(&mut self, index: usize) -> &mut V {
1729 let len: usize = self.len();
1730
1731 if let Some((_, value)) = self.get_index_mut(index) {
1732 value
1733 } else {
1734 panic!("index out of bounds: the len is {len} but the index is {index}");
1735 }
1736 }
1737}
1738
1739impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1740where
1741 K: Hash + Eq,
1742 S: BuildHasher + Default,
1743{
1744 /// Create an `IndexMap` from the sequence of key-value pairs in the
1745 /// iterable.
1746 ///
1747 /// `from_iter` uses the same logic as `extend`. See
1748 /// [`extend`][IndexMap::extend] for more details.
1749 fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1750 let iter = iterable.into_iter();
1751 let (low, _) = iter.size_hint();
1752 let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1753 map.extend(iter);
1754 map
1755 }
1756}
1757
1758#[cfg(feature = "std")]
1759#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1760impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1761where
1762 K: Hash + Eq,
1763{
1764 /// # Examples
1765 ///
1766 /// ```
1767 /// use indexmap::IndexMap;
1768 ///
1769 /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1770 /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1771 /// assert_eq!(map1, map2);
1772 /// ```
1773 fn from(arr: [(K, V); N]) -> Self {
1774 Self::from_iter(arr)
1775 }
1776}
1777
1778impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1779where
1780 K: Hash + Eq,
1781 S: BuildHasher,
1782{
1783 /// Extend the map with all key-value pairs in the iterable.
1784 ///
1785 /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1786 /// them in order, which means that for keys that already existed
1787 /// in the map, their value is updated but it keeps the existing order.
1788 ///
1789 /// New keys are inserted in the order they appear in the sequence. If
1790 /// equivalents of a key occur more than once, the last corresponding value
1791 /// prevails.
1792 fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1793 // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1794 // Keys may be already present or show multiple times in the iterator.
1795 // Reserve the entire hint lower bound if the map is empty.
1796 // Otherwise reserve half the hint (rounded up), so the map
1797 // will only resize twice in the worst case.
1798 let iter = iterable.into_iter();
1799 let reserve = if self.is_empty() {
1800 iter.size_hint().0
1801 } else {
1802 (iter.size_hint().0 + 1) / 2
1803 };
1804 self.reserve(reserve);
1805 iter.for_each(move |(k, v)| {
1806 self.insert(k, v);
1807 });
1808 }
1809}
1810
1811impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1812where
1813 K: Hash + Eq + Copy,
1814 V: Copy,
1815 S: BuildHasher,
1816{
1817 /// Extend the map with all key-value pairs in the iterable.
1818 ///
1819 /// See the first extend method for more details.
1820 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1821 self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1822 }
1823}
1824
1825impl<K, V, S> Default for IndexMap<K, V, S>
1826where
1827 S: Default,
1828{
1829 /// Return an empty [`IndexMap`]
1830 fn default() -> Self {
1831 Self::with_capacity_and_hasher(0, S::default())
1832 }
1833}
1834
1835impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1836where
1837 K: Hash + Eq,
1838 V1: PartialEq<V2>,
1839 S1: BuildHasher,
1840 S2: BuildHasher,
1841{
1842 fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1843 if self.len() != other.len() {
1844 return false;
1845 }
1846
1847 self.iter()
1848 .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1849 }
1850}
1851
1852impl<K, V, S> Eq for IndexMap<K, V, S>
1853where
1854 K: Eq + Hash,
1855 V: Eq,
1856 S: BuildHasher,
1857{
1858}