indexmap/
map.rs

1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19    Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
20    Values, ValuesMut,
21};
22pub use self::mutable::MutableEntryKey;
23pub use self::mutable::MutableKeys;
24pub use self::slice::Slice;
25
26#[cfg(feature = "rayon")]
27pub use crate::rayon::map as rayon;
28
29use ::core::cmp::Ordering;
30use ::core::fmt;
31use ::core::hash::{BuildHasher, Hash, Hasher};
32use ::core::mem;
33use ::core::ops::{Index, IndexMut, RangeBounds};
34use alloc::boxed::Box;
35use alloc::vec::Vec;
36
37#[cfg(feature = "std")]
38use std::collections::hash_map::RandomState;
39
40pub(crate) use self::core::{ExtractCore, IndexMapCore};
41use crate::util::{third, try_simplify_range};
42use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
43
44/// A hash table where the iteration order of the key-value pairs is independent
45/// of the hash values of the keys.
46///
47/// The interface is closely compatible with the standard
48/// [`HashMap`][std::collections::HashMap],
49/// but also has additional features.
50///
51/// # Order
52///
53/// The key-value pairs have a consistent order that is determined by
54/// the sequence of insertion and removal calls on the map. The order does
55/// not depend on the keys or the hash function at all.
56///
57/// All iterators traverse the map in *the order*.
58///
59/// The insertion order is preserved, with **notable exceptions** like the
60/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
61/// Methods such as [`.sort_by()`][Self::sort_by] of
62/// course result in a new order, depending on the sorting order.
63///
64/// # Indices
65///
66/// The key-value pairs are indexed in a compact range without holes in the
67/// range `0..self.len()`. For example, the method `.get_full` looks up the
68/// index for a key, and the method `.get_index` looks up the key-value pair by
69/// index.
70///
71/// # Examples
72///
73/// ```
74/// use indexmap::IndexMap;
75///
76/// // count the frequency of each letter in a sentence.
77/// let mut letters = IndexMap::new();
78/// for ch in "a short treatise on fungi".chars() {
79///     *letters.entry(ch).or_insert(0) += 1;
80/// }
81///
82/// assert_eq!(letters[&'s'], 2);
83/// assert_eq!(letters[&'t'], 3);
84/// assert_eq!(letters[&'u'], 1);
85/// assert_eq!(letters.get(&'y'), None);
86/// ```
87#[cfg(feature = "std")]
88pub struct IndexMap<K, V, S = RandomState> {
89    pub(crate) core: IndexMapCore<K, V>,
90    hash_builder: S,
91}
92#[cfg(not(feature = "std"))]
93pub struct IndexMap<K, V, S> {
94    pub(crate) core: IndexMapCore<K, V>,
95    hash_builder: S,
96}
97
98impl<K, V, S> Clone for IndexMap<K, V, S>
99where
100    K: Clone,
101    V: Clone,
102    S: Clone,
103{
104    fn clone(&self) -> Self {
105        IndexMap {
106            core: self.core.clone(),
107            hash_builder: self.hash_builder.clone(),
108        }
109    }
110
111    fn clone_from(&mut self, other: &Self) {
112        self.core.clone_from(&other.core);
113        self.hash_builder.clone_from(&other.hash_builder);
114    }
115}
116
117impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
118where
119    K: fmt::Debug,
120    V: fmt::Debug,
121{
122    #[cfg(not(feature = "test_debug"))]
123    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124        f.debug_map().entries(self.iter()).finish()
125    }
126
127    #[cfg(feature = "test_debug")]
128    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
129        // Let the inner `IndexMapCore` print all of its details
130        f.debug_struct("IndexMap")
131            .field("core", &self.core)
132            .finish()
133    }
134}
135
136#[cfg(feature = "std")]
137#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
138impl<K, V> IndexMap<K, V> {
139    /// Create a new map. (Does not allocate.)
140    #[inline]
141    pub fn new() -> Self {
142        Self::with_capacity(0)
143    }
144
145    /// Create a new map with capacity for `n` key-value pairs. (Does not
146    /// allocate if `n` is zero.)
147    ///
148    /// Computes in **O(n)** time.
149    #[inline]
150    pub fn with_capacity(n: usize) -> Self {
151        Self::with_capacity_and_hasher(n, <_>::default())
152    }
153}
154
155impl<K, V, S> IndexMap<K, V, S> {
156    /// Create a new map with capacity for `n` key-value pairs. (Does not
157    /// allocate if `n` is zero.)
158    ///
159    /// Computes in **O(n)** time.
160    #[inline]
161    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
162        if n == 0 {
163            Self::with_hasher(hash_builder)
164        } else {
165            IndexMap {
166                core: IndexMapCore::with_capacity(n),
167                hash_builder,
168            }
169        }
170    }
171
172    /// Create a new map with `hash_builder`.
173    ///
174    /// This function is `const`, so it
175    /// can be called in `static` contexts.
176    pub const fn with_hasher(hash_builder: S) -> Self {
177        IndexMap {
178            core: IndexMapCore::new(),
179            hash_builder,
180        }
181    }
182
183    #[inline]
184    pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
185        self.core.into_entries()
186    }
187
188    #[inline]
189    pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
190        self.core.as_entries()
191    }
192
193    #[inline]
194    pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
195        self.core.as_entries_mut()
196    }
197
198    pub(crate) fn with_entries<F>(&mut self, f: F)
199    where
200        F: FnOnce(&mut [Bucket<K, V>]),
201    {
202        self.core.with_entries(f);
203    }
204
205    /// Return the number of elements the map can hold without reallocating.
206    ///
207    /// This number is a lower bound; the map might be able to hold more,
208    /// but is guaranteed to be able to hold at least this many.
209    ///
210    /// Computes in **O(1)** time.
211    pub fn capacity(&self) -> usize {
212        self.core.capacity()
213    }
214
215    /// Return a reference to the map's `BuildHasher`.
216    pub fn hasher(&self) -> &S {
217        &self.hash_builder
218    }
219
220    /// Return the number of key-value pairs in the map.
221    ///
222    /// Computes in **O(1)** time.
223    #[inline]
224    pub fn len(&self) -> usize {
225        self.core.len()
226    }
227
228    /// Returns true if the map contains no elements.
229    ///
230    /// Computes in **O(1)** time.
231    #[inline]
232    pub fn is_empty(&self) -> bool {
233        self.len() == 0
234    }
235
236    /// Return an iterator over the key-value pairs of the map, in their order
237    pub fn iter(&self) -> Iter<'_, K, V> {
238        Iter::new(self.as_entries())
239    }
240
241    /// Return an iterator over the key-value pairs of the map, in their order
242    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
243        IterMut::new(self.as_entries_mut())
244    }
245
246    /// Return an iterator over the keys of the map, in their order
247    pub fn keys(&self) -> Keys<'_, K, V> {
248        Keys::new(self.as_entries())
249    }
250
251    /// Return an owning iterator over the keys of the map, in their order
252    pub fn into_keys(self) -> IntoKeys<K, V> {
253        IntoKeys::new(self.into_entries())
254    }
255
256    /// Return an iterator over the values of the map, in their order
257    pub fn values(&self) -> Values<'_, K, V> {
258        Values::new(self.as_entries())
259    }
260
261    /// Return an iterator over mutable references to the values of the map,
262    /// in their order
263    pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
264        ValuesMut::new(self.as_entries_mut())
265    }
266
267    /// Return an owning iterator over the values of the map, in their order
268    pub fn into_values(self) -> IntoValues<K, V> {
269        IntoValues::new(self.into_entries())
270    }
271
272    /// Remove all key-value pairs in the map, while preserving its capacity.
273    ///
274    /// Computes in **O(n)** time.
275    pub fn clear(&mut self) {
276        self.core.clear();
277    }
278
279    /// Shortens the map, keeping the first `len` elements and dropping the rest.
280    ///
281    /// If `len` is greater than the map's current length, this has no effect.
282    pub fn truncate(&mut self, len: usize) {
283        self.core.truncate(len);
284    }
285
286    /// Clears the `IndexMap` in the given index range, returning those
287    /// key-value pairs as a drain iterator.
288    ///
289    /// The range may be any type that implements [`RangeBounds<usize>`],
290    /// including all of the `std::ops::Range*` types, or even a tuple pair of
291    /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
292    /// like `map.drain(..)`.
293    ///
294    /// This shifts down all entries following the drained range to fill the
295    /// gap, and keeps the allocated memory for reuse.
296    ///
297    /// ***Panics*** if the starting point is greater than the end point or if
298    /// the end point is greater than the length of the map.
299    #[track_caller]
300    pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
301    where
302        R: RangeBounds<usize>,
303    {
304        Drain::new(self.core.drain(range))
305    }
306
307    /// Creates an iterator which uses a closure to determine if an element should be removed,
308    /// for all elements in the given range.
309    ///
310    /// If the closure returns true, the element is removed from the map and yielded.
311    /// If the closure returns false, or panics, the element remains in the map and will not be
312    /// yielded.
313    ///
314    /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
315    /// whether you choose to keep or remove it.
316    ///
317    /// The range may be any type that implements [`RangeBounds<usize>`],
318    /// including all of the `std::ops::Range*` types, or even a tuple pair of
319    /// `Bound` start and end values. To check the entire map, use `RangeFull`
320    /// like `map.extract_if(.., predicate)`.
321    ///
322    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
323    /// or the iteration short-circuits, then the remaining elements will be retained.
324    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
325    ///
326    /// [`retain`]: IndexMap::retain
327    ///
328    /// ***Panics*** if the starting point is greater than the end point or if
329    /// the end point is greater than the length of the map.
330    ///
331    /// # Examples
332    ///
333    /// Splitting a map into even and odd keys, reusing the original map:
334    ///
335    /// ```
336    /// use indexmap::IndexMap;
337    ///
338    /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
339    /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
340    ///
341    /// let evens = extracted.keys().copied().collect::<Vec<_>>();
342    /// let odds = map.keys().copied().collect::<Vec<_>>();
343    ///
344    /// assert_eq!(evens, vec![0, 2, 4, 6]);
345    /// assert_eq!(odds, vec![1, 3, 5, 7]);
346    /// ```
347    #[track_caller]
348    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
349    where
350        F: FnMut(&K, &mut V) -> bool,
351        R: RangeBounds<usize>,
352    {
353        ExtractIf::new(&mut self.core, range, pred)
354    }
355
356    /// Splits the collection into two at the given index.
357    ///
358    /// Returns a newly allocated map containing the elements in the range
359    /// `[at, len)`. After the call, the original map will be left containing
360    /// the elements `[0, at)` with its previous capacity unchanged.
361    ///
362    /// ***Panics*** if `at > len`.
363    #[track_caller]
364    pub fn split_off(&mut self, at: usize) -> Self
365    where
366        S: Clone,
367    {
368        Self {
369            core: self.core.split_off(at),
370            hash_builder: self.hash_builder.clone(),
371        }
372    }
373
374    /// Reserve capacity for `additional` more key-value pairs.
375    ///
376    /// Computes in **O(n)** time.
377    pub fn reserve(&mut self, additional: usize) {
378        self.core.reserve(additional);
379    }
380
381    /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
382    ///
383    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
384    /// frequent re-allocations. However, the underlying data structures may still have internal
385    /// capacity requirements, and the allocator itself may give more space than requested, so this
386    /// cannot be relied upon to be precisely minimal.
387    ///
388    /// Computes in **O(n)** time.
389    pub fn reserve_exact(&mut self, additional: usize) {
390        self.core.reserve_exact(additional);
391    }
392
393    /// Try to reserve capacity for `additional` more key-value pairs.
394    ///
395    /// Computes in **O(n)** time.
396    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
397        self.core.try_reserve(additional)
398    }
399
400    /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
401    ///
402    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
403    /// frequent re-allocations. However, the underlying data structures may still have internal
404    /// capacity requirements, and the allocator itself may give more space than requested, so this
405    /// cannot be relied upon to be precisely minimal.
406    ///
407    /// Computes in **O(n)** time.
408    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
409        self.core.try_reserve_exact(additional)
410    }
411
412    /// Shrink the capacity of the map as much as possible.
413    ///
414    /// Computes in **O(n)** time.
415    pub fn shrink_to_fit(&mut self) {
416        self.core.shrink_to(0);
417    }
418
419    /// Shrink the capacity of the map with a lower limit.
420    ///
421    /// Computes in **O(n)** time.
422    pub fn shrink_to(&mut self, min_capacity: usize) {
423        self.core.shrink_to(min_capacity);
424    }
425}
426
427impl<K, V, S> IndexMap<K, V, S>
428where
429    K: Hash + Eq,
430    S: BuildHasher,
431{
432    /// Insert a key-value pair in the map.
433    ///
434    /// If an equivalent key already exists in the map: the key remains and
435    /// retains in its place in the order, its corresponding value is updated
436    /// with `value`, and the older value is returned inside `Some(_)`.
437    ///
438    /// If no equivalent key existed in the map: the new key-value pair is
439    /// inserted, last in order, and `None` is returned.
440    ///
441    /// Computes in **O(1)** time (amortized average).
442    ///
443    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
444    /// or [`insert_full`][Self::insert_full] if you need to get the index of
445    /// the corresponding key-value pair.
446    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
447        self.insert_full(key, value).1
448    }
449
450    /// Insert a key-value pair in the map, and get their index.
451    ///
452    /// If an equivalent key already exists in the map: the key remains and
453    /// retains in its place in the order, its corresponding value is updated
454    /// with `value`, and the older value is returned inside `(index, Some(_))`.
455    ///
456    /// If no equivalent key existed in the map: the new key-value pair is
457    /// inserted, last in order, and `(index, None)` is returned.
458    ///
459    /// Computes in **O(1)** time (amortized average).
460    ///
461    /// See also [`entry`][Self::entry] if you want to insert *or* modify.
462    pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
463        let hash = self.hash(&key);
464        self.core.insert_full(hash, key, value)
465    }
466
467    /// Insert a key-value pair in the map at its ordered position among sorted keys.
468    ///
469    /// This is equivalent to finding the position with
470    /// [`binary_search_keys`][Self::binary_search_keys], then either updating
471    /// it or calling [`insert_before`][Self::insert_before] for a new key.
472    ///
473    /// If the sorted key is found in the map, its corresponding value is
474    /// updated with `value`, and the older value is returned inside
475    /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
476    /// the sorted position, and `(index, None)` is returned.
477    ///
478    /// If the existing keys are **not** already sorted, then the insertion
479    /// index is unspecified (like [`slice::binary_search`]), but the key-value
480    /// pair is moved to or inserted at that position regardless.
481    ///
482    /// Computes in **O(n)** time (average). Instead of repeating calls to
483    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
484    /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
485    /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
486    pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
487    where
488        K: Ord,
489    {
490        match self.binary_search_keys(&key) {
491            Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
492            Err(i) => self.insert_before(i, key, value),
493        }
494    }
495
496    /// Insert a key-value pair in the map at its ordered position among keys
497    /// sorted by `cmp`.
498    ///
499    /// This is equivalent to finding the position with
500    /// [`binary_search_by`][Self::binary_search_by], then calling
501    /// [`insert_before`][Self::insert_before] with the given key and value.
502    ///
503    /// If the existing keys are **not** already sorted, then the insertion
504    /// index is unspecified (like [`slice::binary_search`]), but the key-value
505    /// pair is moved to or inserted at that position regardless.
506    ///
507    /// Computes in **O(n)** time (average).
508    pub fn insert_sorted_by<F>(&mut self, key: K, value: V, mut cmp: F) -> (usize, Option<V>)
509    where
510        F: FnMut(&K, &V, &K, &V) -> Ordering,
511    {
512        let (Ok(i) | Err(i)) = self.binary_search_by(|k, v| cmp(k, v, &key, &value));
513        self.insert_before(i, key, value)
514    }
515
516    /// Insert a key-value pair in the map at its ordered position
517    /// using a sort-key extraction function.
518    ///
519    /// This is equivalent to finding the position with
520    /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, then
521    /// calling [`insert_before`][Self::insert_before] with the given key and value.
522    ///
523    /// If the existing keys are **not** already sorted, then the insertion
524    /// index is unspecified (like [`slice::binary_search`]), but the key-value
525    /// pair is moved to or inserted at that position regardless.
526    ///
527    /// Computes in **O(n)** time (average).
528    pub fn insert_sorted_by_key<B, F>(
529        &mut self,
530        key: K,
531        value: V,
532        mut sort_key: F,
533    ) -> (usize, Option<V>)
534    where
535        B: Ord,
536        F: FnMut(&K, &V) -> B,
537    {
538        let search_key = sort_key(&key, &value);
539        let (Ok(i) | Err(i)) = self.binary_search_by_key(&search_key, sort_key);
540        self.insert_before(i, key, value)
541    }
542
543    /// Insert a key-value pair in the map before the entry at the given index, or at the end.
544    ///
545    /// If an equivalent key already exists in the map: the key remains and
546    /// is moved to the new position in the map, its corresponding value is updated
547    /// with `value`, and the older value is returned inside `Some(_)`. The returned index
548    /// will either be the given index or one less, depending on how the entry moved.
549    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
550    ///
551    /// If no equivalent key existed in the map: the new key-value pair is
552    /// inserted exactly at the given index, and `None` is returned.
553    ///
554    /// ***Panics*** if `index` is out of bounds.
555    /// Valid indices are `0..=map.len()` (inclusive).
556    ///
557    /// Computes in **O(n)** time (average).
558    ///
559    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
560    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
561    ///
562    /// # Examples
563    ///
564    /// ```
565    /// use indexmap::IndexMap;
566    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
567    ///
568    /// // The new key '*' goes exactly at the given index.
569    /// assert_eq!(map.get_index_of(&'*'), None);
570    /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
571    /// assert_eq!(map.get_index_of(&'*'), Some(10));
572    ///
573    /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
574    /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
575    /// assert_eq!(map.get_index_of(&'a'), Some(9));
576    /// assert_eq!(map.get_index_of(&'*'), Some(10));
577    ///
578    /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
579    /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
580    /// assert_eq!(map.get_index_of(&'z'), Some(10));
581    /// assert_eq!(map.get_index_of(&'*'), Some(11));
582    ///
583    /// // Moving or inserting before the endpoint is also valid.
584    /// assert_eq!(map.len(), 27);
585    /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
586    /// assert_eq!(map.get_index_of(&'*'), Some(26));
587    /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
588    /// assert_eq!(map.get_index_of(&'+'), Some(27));
589    /// assert_eq!(map.len(), 28);
590    /// ```
591    #[track_caller]
592    pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
593        let len = self.len();
594
595        assert!(
596            index <= len,
597            "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
598        );
599
600        match self.entry(key) {
601            Entry::Occupied(mut entry) => {
602                if index > entry.index() {
603                    // Some entries will shift down when this one moves up,
604                    // so "insert before index" becomes "move to index - 1",
605                    // keeping the entry at the original index unmoved.
606                    index -= 1;
607                }
608                let old = mem::replace(entry.get_mut(), value);
609                entry.move_index(index);
610                (index, Some(old))
611            }
612            Entry::Vacant(entry) => {
613                entry.shift_insert(index, value);
614                (index, None)
615            }
616        }
617    }
618
619    /// Insert a key-value pair in the map at the given index.
620    ///
621    /// If an equivalent key already exists in the map: the key remains and
622    /// is moved to the given index in the map, its corresponding value is updated
623    /// with `value`, and the older value is returned inside `Some(_)`.
624    /// Note that existing entries **cannot** be moved to `index == map.len()`!
625    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
626    ///
627    /// If no equivalent key existed in the map: the new key-value pair is
628    /// inserted at the given index, and `None` is returned.
629    ///
630    /// ***Panics*** if `index` is out of bounds.
631    /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
632    /// `0..=map.len()` (inclusive) when inserting a new key.
633    ///
634    /// Computes in **O(n)** time (average).
635    ///
636    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
637    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// use indexmap::IndexMap;
643    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
644    ///
645    /// // The new key '*' goes exactly at the given index.
646    /// assert_eq!(map.get_index_of(&'*'), None);
647    /// assert_eq!(map.shift_insert(10, '*', ()), None);
648    /// assert_eq!(map.get_index_of(&'*'), Some(10));
649    ///
650    /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
651    /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
652    /// assert_eq!(map.get_index_of(&'a'), Some(10));
653    /// assert_eq!(map.get_index_of(&'*'), Some(9));
654    ///
655    /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
656    /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
657    /// assert_eq!(map.get_index_of(&'z'), Some(9));
658    /// assert_eq!(map.get_index_of(&'*'), Some(10));
659    ///
660    /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
661    /// assert_eq!(map.len(), 27);
662    /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
663    /// assert_eq!(map.get_index_of(&'*'), Some(26));
664    /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
665    /// assert_eq!(map.get_index_of(&'+'), Some(27));
666    /// assert_eq!(map.len(), 28);
667    /// ```
668    ///
669    /// ```should_panic
670    /// use indexmap::IndexMap;
671    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
672    ///
673    /// // This is an invalid index for moving an existing key!
674    /// map.shift_insert(map.len(), 'a', ());
675    /// ```
676    #[track_caller]
677    pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
678        let len = self.len();
679        match self.entry(key) {
680            Entry::Occupied(mut entry) => {
681                assert!(
682                    index < len,
683                    "index out of bounds: the len is {len} but the index is {index}"
684                );
685
686                let old = mem::replace(entry.get_mut(), value);
687                entry.move_index(index);
688                Some(old)
689            }
690            Entry::Vacant(entry) => {
691                assert!(
692                    index <= len,
693                    "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
694                );
695
696                entry.shift_insert(index, value);
697                None
698            }
699        }
700    }
701
702    /// Replaces the key at the given index. The new key does not need to be
703    /// equivalent to the one it is replacing, but it must be unique to the rest
704    /// of the map.
705    ///
706    /// Returns `Ok(old_key)` if successful, or `Err((other_index, key))` if an
707    /// equivalent key already exists at a different index. The map will be
708    /// unchanged in the error case.
709    ///
710    /// Direct indexing can be used to change the corresponding value: simply
711    /// `map[index] = value`, or `mem::replace(&mut map[index], value)` to
712    /// retrieve the old value as well.
713    ///
714    /// ***Panics*** if `index` is out of bounds.
715    ///
716    /// Computes in **O(1)** time (average).
717    #[track_caller]
718    pub fn replace_index(&mut self, index: usize, key: K) -> Result<K, (usize, K)> {
719        // If there's a direct match, we don't even need to hash it.
720        let entry = &mut self.as_entries_mut()[index];
721        if key == entry.key {
722            return Ok(mem::replace(&mut entry.key, key));
723        }
724
725        let hash = self.hash(&key);
726        if let Some(i) = self.core.get_index_of(hash, &key) {
727            debug_assert_ne!(i, index);
728            return Err((i, key));
729        }
730        Ok(self.core.replace_index_unique(index, hash, key))
731    }
732
733    /// Get the given key's corresponding entry in the map for insertion and/or
734    /// in-place manipulation.
735    ///
736    /// Computes in **O(1)** time (amortized average).
737    pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
738        let hash = self.hash(&key);
739        self.core.entry(hash, key)
740    }
741
742    /// Creates a splicing iterator that replaces the specified range in the map
743    /// with the given `replace_with` key-value iterator and yields the removed
744    /// items. `replace_with` does not need to be the same length as `range`.
745    ///
746    /// The `range` is removed even if the iterator is not consumed until the
747    /// end. It is unspecified how many elements are removed from the map if the
748    /// `Splice` value is leaked.
749    ///
750    /// The input iterator `replace_with` is only consumed when the `Splice`
751    /// value is dropped. If a key from the iterator matches an existing entry
752    /// in the map (outside of `range`), then the value will be updated in that
753    /// position. Otherwise, the new key-value pair will be inserted in the
754    /// replaced `range`.
755    ///
756    /// ***Panics*** if the starting point is greater than the end point or if
757    /// the end point is greater than the length of the map.
758    ///
759    /// # Examples
760    ///
761    /// ```
762    /// use indexmap::IndexMap;
763    ///
764    /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
765    /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
766    /// let removed: Vec<_> = map.splice(2..4, new).collect();
767    ///
768    /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
769    /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
770    /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
771    /// ```
772    #[track_caller]
773    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
774    where
775        R: RangeBounds<usize>,
776        I: IntoIterator<Item = (K, V)>,
777    {
778        Splice::new(self, range, replace_with.into_iter())
779    }
780
781    /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
782    ///
783    /// This is equivalent to calling [`insert`][Self::insert] for each
784    /// key-value pair from `other` in order, which means that for keys that
785    /// already exist in `self`, their value is updated in the current position.
786    ///
787    /// # Examples
788    ///
789    /// ```
790    /// use indexmap::IndexMap;
791    ///
792    /// // Note: Key (3) is present in both maps.
793    /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
794    /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
795    /// let old_capacity = b.capacity();
796    ///
797    /// a.append(&mut b);
798    ///
799    /// assert_eq!(a.len(), 5);
800    /// assert_eq!(b.len(), 0);
801    /// assert_eq!(b.capacity(), old_capacity);
802    ///
803    /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
804    /// assert_eq!(a[&3], "d"); // "c" was overwritten.
805    /// ```
806    pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
807        self.extend(other.drain(..));
808    }
809}
810
811impl<K, V, S> IndexMap<K, V, S>
812where
813    S: BuildHasher,
814{
815    pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
816        let mut h = self.hash_builder.build_hasher();
817        key.hash(&mut h);
818        HashValue(h.finish() as usize)
819    }
820
821    /// Return `true` if an equivalent to `key` exists in the map.
822    ///
823    /// Computes in **O(1)** time (average).
824    pub fn contains_key<Q>(&self, key: &Q) -> bool
825    where
826        Q: ?Sized + Hash + Equivalent<K>,
827    {
828        self.get_index_of(key).is_some()
829    }
830
831    /// Return a reference to the stored value for `key`, if it is present,
832    /// else `None`.
833    ///
834    /// Computes in **O(1)** time (average).
835    pub fn get<Q>(&self, key: &Q) -> Option<&V>
836    where
837        Q: ?Sized + Hash + Equivalent<K>,
838    {
839        if let Some(i) = self.get_index_of(key) {
840            let entry = &self.as_entries()[i];
841            Some(&entry.value)
842        } else {
843            None
844        }
845    }
846
847    /// Return references to the stored key-value pair for the lookup `key`,
848    /// if it is present, else `None`.
849    ///
850    /// Computes in **O(1)** time (average).
851    pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
852    where
853        Q: ?Sized + Hash + Equivalent<K>,
854    {
855        if let Some(i) = self.get_index_of(key) {
856            let entry = &self.as_entries()[i];
857            Some((&entry.key, &entry.value))
858        } else {
859            None
860        }
861    }
862
863    /// Return the index with references to the stored key-value pair for the
864    /// lookup `key`, if it is present, else `None`.
865    ///
866    /// Computes in **O(1)** time (average).
867    pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
868    where
869        Q: ?Sized + Hash + Equivalent<K>,
870    {
871        if let Some(i) = self.get_index_of(key) {
872            let entry = &self.as_entries()[i];
873            Some((i, &entry.key, &entry.value))
874        } else {
875            None
876        }
877    }
878
879    /// Return the item index for `key`, if it is present, else `None`.
880    ///
881    /// Computes in **O(1)** time (average).
882    pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
883    where
884        Q: ?Sized + Hash + Equivalent<K>,
885    {
886        match self.as_entries() {
887            [] => None,
888            [x] => key.equivalent(&x.key).then_some(0),
889            _ => {
890                let hash = self.hash(key);
891                self.core.get_index_of(hash, key)
892            }
893        }
894    }
895
896    /// Return a mutable reference to the stored value for `key`,
897    /// if it is present, else `None`.
898    ///
899    /// Computes in **O(1)** time (average).
900    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
901    where
902        Q: ?Sized + Hash + Equivalent<K>,
903    {
904        if let Some(i) = self.get_index_of(key) {
905            let entry = &mut self.as_entries_mut()[i];
906            Some(&mut entry.value)
907        } else {
908            None
909        }
910    }
911
912    /// Return a reference and mutable references to the stored key-value pair
913    /// for the lookup `key`, if it is present, else `None`.
914    ///
915    /// Computes in **O(1)** time (average).
916    pub fn get_key_value_mut<Q>(&mut self, key: &Q) -> Option<(&K, &mut V)>
917    where
918        Q: ?Sized + Hash + Equivalent<K>,
919    {
920        if let Some(i) = self.get_index_of(key) {
921            let entry = &mut self.as_entries_mut()[i];
922            Some((&entry.key, &mut entry.value))
923        } else {
924            None
925        }
926    }
927
928    /// Return the index with a reference and mutable reference to the stored
929    /// key-value pair for the lookup `key`, if it is present, else `None`.
930    ///
931    /// Computes in **O(1)** time (average).
932    pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
933    where
934        Q: ?Sized + Hash + Equivalent<K>,
935    {
936        if let Some(i) = self.get_index_of(key) {
937            let entry = &mut self.as_entries_mut()[i];
938            Some((i, &entry.key, &mut entry.value))
939        } else {
940            None
941        }
942    }
943
944    /// Return the values for `N` keys. If any key is duplicated, this function will panic.
945    ///
946    /// # Examples
947    ///
948    /// ```
949    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
950    /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
951    /// ```
952    pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
953    where
954        Q: ?Sized + Hash + Equivalent<K>,
955    {
956        let indices = keys.map(|key| self.get_index_of(key));
957        match self.as_mut_slice().get_disjoint_opt_mut(indices) {
958            Err(GetDisjointMutError::IndexOutOfBounds) => {
959                unreachable!(
960                    "Internal error: indices should never be OOB as we got them from get_index_of"
961                );
962            }
963            Err(GetDisjointMutError::OverlappingIndices) => {
964                panic!("duplicate keys found");
965            }
966            Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
967        }
968    }
969
970    /// Remove the key-value pair equivalent to `key` and return
971    /// its value.
972    ///
973    /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
974    /// entry's position with the last element, and it is deprecated in favor of calling that
975    /// explicitly. If you need to preserve the relative order of the keys in the map, use
976    /// [`.shift_remove(key)`][Self::shift_remove] instead.
977    #[deprecated(note = "`remove` disrupts the map order -- \
978        use `swap_remove` or `shift_remove` for explicit behavior.")]
979    pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
980    where
981        Q: ?Sized + Hash + Equivalent<K>,
982    {
983        self.swap_remove(key)
984    }
985
986    /// Remove and return the key-value pair equivalent to `key`.
987    ///
988    /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
989    /// replacing this entry's position with the last element, and it is deprecated in favor of
990    /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
991    /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
992    #[deprecated(note = "`remove_entry` disrupts the map order -- \
993        use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
994    pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
995    where
996        Q: ?Sized + Hash + Equivalent<K>,
997    {
998        self.swap_remove_entry(key)
999    }
1000
1001    /// Remove the key-value pair equivalent to `key` and return
1002    /// its value.
1003    ///
1004    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1005    /// last element of the map and popping it off. **This perturbs
1006    /// the position of what used to be the last element!**
1007    ///
1008    /// Return `None` if `key` is not in map.
1009    ///
1010    /// Computes in **O(1)** time (average).
1011    pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
1012    where
1013        Q: ?Sized + Hash + Equivalent<K>,
1014    {
1015        self.swap_remove_full(key).map(third)
1016    }
1017
1018    /// Remove and return the key-value pair equivalent to `key`.
1019    ///
1020    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1021    /// last element of the map and popping it off. **This perturbs
1022    /// the position of what used to be the last element!**
1023    ///
1024    /// Return `None` if `key` is not in map.
1025    ///
1026    /// Computes in **O(1)** time (average).
1027    pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1028    where
1029        Q: ?Sized + Hash + Equivalent<K>,
1030    {
1031        match self.swap_remove_full(key) {
1032            Some((_, key, value)) => Some((key, value)),
1033            None => None,
1034        }
1035    }
1036
1037    /// Remove the key-value pair equivalent to `key` and return it and
1038    /// the index it had.
1039    ///
1040    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1041    /// last element of the map and popping it off. **This perturbs
1042    /// the position of what used to be the last element!**
1043    ///
1044    /// Return `None` if `key` is not in map.
1045    ///
1046    /// Computes in **O(1)** time (average).
1047    pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1048    where
1049        Q: ?Sized + Hash + Equivalent<K>,
1050    {
1051        match self.as_entries() {
1052            [x] if key.equivalent(&x.key) => {
1053                let (k, v) = self.core.pop()?;
1054                Some((0, k, v))
1055            }
1056            [_] | [] => None,
1057            _ => {
1058                let hash = self.hash(key);
1059                self.core.swap_remove_full(hash, key)
1060            }
1061        }
1062    }
1063
1064    /// Remove the key-value pair equivalent to `key` and return
1065    /// its value.
1066    ///
1067    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1068    /// elements that follow it, preserving their relative order.
1069    /// **This perturbs the index of all of those elements!**
1070    ///
1071    /// Return `None` if `key` is not in map.
1072    ///
1073    /// Computes in **O(n)** time (average).
1074    pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
1075    where
1076        Q: ?Sized + Hash + Equivalent<K>,
1077    {
1078        self.shift_remove_full(key).map(third)
1079    }
1080
1081    /// Remove and return the key-value pair equivalent to `key`.
1082    ///
1083    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1084    /// elements that follow it, preserving their relative order.
1085    /// **This perturbs the index of all of those elements!**
1086    ///
1087    /// Return `None` if `key` is not in map.
1088    ///
1089    /// Computes in **O(n)** time (average).
1090    pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1091    where
1092        Q: ?Sized + Hash + Equivalent<K>,
1093    {
1094        match self.shift_remove_full(key) {
1095            Some((_, key, value)) => Some((key, value)),
1096            None => None,
1097        }
1098    }
1099
1100    /// Remove the key-value pair equivalent to `key` and return it and
1101    /// the index it had.
1102    ///
1103    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1104    /// elements that follow it, preserving their relative order.
1105    /// **This perturbs the index of all of those elements!**
1106    ///
1107    /// Return `None` if `key` is not in map.
1108    ///
1109    /// Computes in **O(n)** time (average).
1110    pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1111    where
1112        Q: ?Sized + Hash + Equivalent<K>,
1113    {
1114        match self.as_entries() {
1115            [x] if key.equivalent(&x.key) => {
1116                let (k, v) = self.core.pop()?;
1117                Some((0, k, v))
1118            }
1119            [_] | [] => None,
1120            _ => {
1121                let hash = self.hash(key);
1122                self.core.shift_remove_full(hash, key)
1123            }
1124        }
1125    }
1126}
1127
1128impl<K, V, S> IndexMap<K, V, S> {
1129    /// Remove the last key-value pair
1130    ///
1131    /// This preserves the order of the remaining elements.
1132    ///
1133    /// Computes in **O(1)** time (average).
1134    #[doc(alias = "pop_last")] // like `BTreeMap`
1135    pub fn pop(&mut self) -> Option<(K, V)> {
1136        self.core.pop()
1137    }
1138
1139    /// Scan through each key-value pair in the map and keep those where the
1140    /// closure `keep` returns `true`.
1141    ///
1142    /// The elements are visited in order, and remaining elements keep their
1143    /// order.
1144    ///
1145    /// Computes in **O(n)** time (average).
1146    pub fn retain<F>(&mut self, mut keep: F)
1147    where
1148        F: FnMut(&K, &mut V) -> bool,
1149    {
1150        self.core.retain_in_order(move |k, v| keep(k, v));
1151    }
1152
1153    /// Sort the map's key-value pairs by the default ordering of the keys.
1154    ///
1155    /// This is a stable sort -- but equivalent keys should not normally coexist in
1156    /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1157    /// because it is generally faster and doesn't allocate auxiliary memory.
1158    ///
1159    /// See [`sort_by`](Self::sort_by) for details.
1160    pub fn sort_keys(&mut self)
1161    where
1162        K: Ord,
1163    {
1164        self.with_entries(move |entries| {
1165            entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1166        });
1167    }
1168
1169    /// Sort the map's key-value pairs in place using the comparison
1170    /// function `cmp`.
1171    ///
1172    /// The comparison function receives two key and value pairs to compare (you
1173    /// can sort by keys or values or their combination as needed).
1174    ///
1175    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1176    /// the length of the map and *c* the capacity. The sort is stable.
1177    pub fn sort_by<F>(&mut self, mut cmp: F)
1178    where
1179        F: FnMut(&K, &V, &K, &V) -> Ordering,
1180    {
1181        self.with_entries(move |entries| {
1182            entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1183        });
1184    }
1185
1186    /// Sort the key-value pairs of the map and return a by-value iterator of
1187    /// the key-value pairs with the result.
1188    ///
1189    /// The sort is stable.
1190    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1191    where
1192        F: FnMut(&K, &V, &K, &V) -> Ordering,
1193    {
1194        let mut entries = self.into_entries();
1195        entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1196        IntoIter::new(entries)
1197    }
1198
1199    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1200    ///
1201    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1202    /// the length of the map and *c* the capacity. The sort is stable.
1203    pub fn sort_by_key<T, F>(&mut self, mut sort_key: F)
1204    where
1205        T: Ord,
1206        F: FnMut(&K, &V) -> T,
1207    {
1208        self.with_entries(move |entries| {
1209            entries.sort_by_key(move |a| sort_key(&a.key, &a.value));
1210        });
1211    }
1212
1213    /// Sort the map's key-value pairs by the default ordering of the keys, but
1214    /// may not preserve the order of equal elements.
1215    ///
1216    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1217    pub fn sort_unstable_keys(&mut self)
1218    where
1219        K: Ord,
1220    {
1221        self.with_entries(move |entries| {
1222            entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1223        });
1224    }
1225
1226    /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1227    /// may not preserve the order of equal elements.
1228    ///
1229    /// The comparison function receives two key and value pairs to compare (you
1230    /// can sort by keys or values or their combination as needed).
1231    ///
1232    /// Computes in **O(n log n + c)** time where *n* is
1233    /// the length of the map and *c* is the capacity. The sort is unstable.
1234    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1235    where
1236        F: FnMut(&K, &V, &K, &V) -> Ordering,
1237    {
1238        self.with_entries(move |entries| {
1239            entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1240        });
1241    }
1242
1243    /// Sort the key-value pairs of the map and return a by-value iterator of
1244    /// the key-value pairs with the result.
1245    ///
1246    /// The sort is unstable.
1247    #[inline]
1248    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1249    where
1250        F: FnMut(&K, &V, &K, &V) -> Ordering,
1251    {
1252        let mut entries = self.into_entries();
1253        entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1254        IntoIter::new(entries)
1255    }
1256
1257    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1258    ///
1259    /// Computes in **O(n log n + c)** time where *n* is
1260    /// the length of the map and *c* is the capacity. The sort is unstable.
1261    pub fn sort_unstable_by_key<T, F>(&mut self, mut sort_key: F)
1262    where
1263        T: Ord,
1264        F: FnMut(&K, &V) -> T,
1265    {
1266        self.with_entries(move |entries| {
1267            entries.sort_unstable_by_key(move |a| sort_key(&a.key, &a.value));
1268        });
1269    }
1270
1271    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1272    ///
1273    /// During sorting, the function is called at most once per entry, by using temporary storage
1274    /// to remember the results of its evaluation. The order of calls to the function is
1275    /// unspecified and may change between versions of `indexmap` or the standard library.
1276    ///
1277    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1278    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1279    pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1280    where
1281        T: Ord,
1282        F: FnMut(&K, &V) -> T,
1283    {
1284        self.with_entries(move |entries| {
1285            entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1286        });
1287    }
1288
1289    /// Search over a sorted map for a key.
1290    ///
1291    /// Returns the position where that key is present, or the position where it can be inserted to
1292    /// maintain the sort. See [`slice::binary_search`] for more details.
1293    ///
1294    /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1295    /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1296    pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1297    where
1298        K: Ord,
1299    {
1300        self.as_slice().binary_search_keys(x)
1301    }
1302
1303    /// Search over a sorted map with a comparator function.
1304    ///
1305    /// Returns the position where that value is present, or the position where it can be inserted
1306    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1307    ///
1308    /// Computes in **O(log(n))** time.
1309    #[inline]
1310    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1311    where
1312        F: FnMut(&'a K, &'a V) -> Ordering,
1313    {
1314        self.as_slice().binary_search_by(f)
1315    }
1316
1317    /// Search over a sorted map with an extraction function.
1318    ///
1319    /// Returns the position where that value is present, or the position where it can be inserted
1320    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1321    ///
1322    /// Computes in **O(log(n))** time.
1323    #[inline]
1324    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1325    where
1326        F: FnMut(&'a K, &'a V) -> B,
1327        B: Ord,
1328    {
1329        self.as_slice().binary_search_by_key(b, f)
1330    }
1331
1332    /// Checks if the keys of this map are sorted.
1333    #[inline]
1334    pub fn is_sorted(&self) -> bool
1335    where
1336        K: PartialOrd,
1337    {
1338        self.as_slice().is_sorted()
1339    }
1340
1341    /// Checks if this map is sorted using the given comparator function.
1342    #[inline]
1343    pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1344    where
1345        F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool,
1346    {
1347        self.as_slice().is_sorted_by(cmp)
1348    }
1349
1350    /// Checks if this map is sorted using the given sort-key function.
1351    #[inline]
1352    pub fn is_sorted_by_key<'a, F, T>(&'a self, sort_key: F) -> bool
1353    where
1354        F: FnMut(&'a K, &'a V) -> T,
1355        T: PartialOrd,
1356    {
1357        self.as_slice().is_sorted_by_key(sort_key)
1358    }
1359
1360    /// Returns the index of the partition point of a sorted map according to the given predicate
1361    /// (the index of the first element of the second partition).
1362    ///
1363    /// See [`slice::partition_point`] for more details.
1364    ///
1365    /// Computes in **O(log(n))** time.
1366    #[must_use]
1367    pub fn partition_point<P>(&self, pred: P) -> usize
1368    where
1369        P: FnMut(&K, &V) -> bool,
1370    {
1371        self.as_slice().partition_point(pred)
1372    }
1373
1374    /// Reverses the order of the map's key-value pairs in place.
1375    ///
1376    /// Computes in **O(n)** time and **O(1)** space.
1377    pub fn reverse(&mut self) {
1378        self.core.reverse()
1379    }
1380
1381    /// Returns a slice of all the key-value pairs in the map.
1382    ///
1383    /// Computes in **O(1)** time.
1384    pub fn as_slice(&self) -> &Slice<K, V> {
1385        Slice::from_slice(self.as_entries())
1386    }
1387
1388    /// Returns a mutable slice of all the key-value pairs in the map.
1389    ///
1390    /// Computes in **O(1)** time.
1391    pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1392        Slice::from_mut_slice(self.as_entries_mut())
1393    }
1394
1395    /// Converts into a boxed slice of all the key-value pairs in the map.
1396    ///
1397    /// Note that this will drop the inner hash table and any excess capacity.
1398    pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1399        Slice::from_boxed(self.into_entries().into_boxed_slice())
1400    }
1401
1402    /// Get a key-value pair by index
1403    ///
1404    /// Valid indices are `0 <= index < self.len()`.
1405    ///
1406    /// Computes in **O(1)** time.
1407    pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1408        self.as_entries().get(index).map(Bucket::refs)
1409    }
1410
1411    /// Get a key-value pair by index
1412    ///
1413    /// Valid indices are `0 <= index < self.len()`.
1414    ///
1415    /// Computes in **O(1)** time.
1416    pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1417        self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1418    }
1419
1420    /// Get an entry in the map by index for in-place manipulation.
1421    ///
1422    /// Valid indices are `0 <= index < self.len()`.
1423    ///
1424    /// Computes in **O(1)** time.
1425    pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1426        if index >= self.len() {
1427            return None;
1428        }
1429        Some(IndexedEntry::new(&mut self.core, index))
1430    }
1431
1432    /// Get an array of `N` key-value pairs by `N` indices
1433    ///
1434    /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1440    /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1441    /// ```
1442    pub fn get_disjoint_indices_mut<const N: usize>(
1443        &mut self,
1444        indices: [usize; N],
1445    ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1446        self.as_mut_slice().get_disjoint_mut(indices)
1447    }
1448
1449    /// Returns a slice of key-value pairs in the given range of indices.
1450    ///
1451    /// Valid indices are `0 <= index < self.len()`.
1452    ///
1453    /// Computes in **O(1)** time.
1454    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1455        let entries = self.as_entries();
1456        let range = try_simplify_range(range, entries.len())?;
1457        entries.get(range).map(Slice::from_slice)
1458    }
1459
1460    /// Returns a mutable slice of key-value pairs in the given range of indices.
1461    ///
1462    /// Valid indices are `0 <= index < self.len()`.
1463    ///
1464    /// Computes in **O(1)** time.
1465    pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1466        let entries = self.as_entries_mut();
1467        let range = try_simplify_range(range, entries.len())?;
1468        entries.get_mut(range).map(Slice::from_mut_slice)
1469    }
1470
1471    /// Get the first key-value pair
1472    ///
1473    /// Computes in **O(1)** time.
1474    #[doc(alias = "first_key_value")] // like `BTreeMap`
1475    pub fn first(&self) -> Option<(&K, &V)> {
1476        self.as_entries().first().map(Bucket::refs)
1477    }
1478
1479    /// Get the first key-value pair, with mutable access to the value
1480    ///
1481    /// Computes in **O(1)** time.
1482    pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1483        self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1484    }
1485
1486    /// Get the first entry in the map for in-place manipulation.
1487    ///
1488    /// Computes in **O(1)** time.
1489    pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1490        self.get_index_entry(0)
1491    }
1492
1493    /// Get the last key-value pair
1494    ///
1495    /// Computes in **O(1)** time.
1496    #[doc(alias = "last_key_value")] // like `BTreeMap`
1497    pub fn last(&self) -> Option<(&K, &V)> {
1498        self.as_entries().last().map(Bucket::refs)
1499    }
1500
1501    /// Get the last key-value pair, with mutable access to the value
1502    ///
1503    /// Computes in **O(1)** time.
1504    pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1505        self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1506    }
1507
1508    /// Get the last entry in the map for in-place manipulation.
1509    ///
1510    /// Computes in **O(1)** time.
1511    pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1512        self.get_index_entry(self.len().checked_sub(1)?)
1513    }
1514
1515    /// Remove the key-value pair by index
1516    ///
1517    /// Valid indices are `0 <= index < self.len()`.
1518    ///
1519    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1520    /// last element of the map and popping it off. **This perturbs
1521    /// the position of what used to be the last element!**
1522    ///
1523    /// Computes in **O(1)** time (average).
1524    pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1525        self.core.swap_remove_index(index)
1526    }
1527
1528    /// Remove the key-value pair by index
1529    ///
1530    /// Valid indices are `0 <= index < self.len()`.
1531    ///
1532    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1533    /// elements that follow it, preserving their relative order.
1534    /// **This perturbs the index of all of those elements!**
1535    ///
1536    /// Computes in **O(n)** time (average).
1537    pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1538        self.core.shift_remove_index(index)
1539    }
1540
1541    /// Moves the position of a key-value pair from one index to another
1542    /// by shifting all other pairs in-between.
1543    ///
1544    /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1545    /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1546    ///
1547    /// ***Panics*** if `from` or `to` are out of bounds.
1548    ///
1549    /// Computes in **O(n)** time (average).
1550    #[track_caller]
1551    pub fn move_index(&mut self, from: usize, to: usize) {
1552        self.core.move_index(from, to)
1553    }
1554
1555    /// Swaps the position of two key-value pairs in the map.
1556    ///
1557    /// ***Panics*** if `a` or `b` are out of bounds.
1558    ///
1559    /// Computes in **O(1)** time (average).
1560    #[track_caller]
1561    pub fn swap_indices(&mut self, a: usize, b: usize) {
1562        self.core.swap_indices(a, b)
1563    }
1564}
1565
1566/// Access [`IndexMap`] values corresponding to a key.
1567///
1568/// # Examples
1569///
1570/// ```
1571/// use indexmap::IndexMap;
1572///
1573/// let mut map = IndexMap::new();
1574/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1575///     map.insert(word.to_lowercase(), word.to_uppercase());
1576/// }
1577/// assert_eq!(map["lorem"], "LOREM");
1578/// assert_eq!(map["ipsum"], "IPSUM");
1579/// ```
1580///
1581/// ```should_panic
1582/// use indexmap::IndexMap;
1583///
1584/// let mut map = IndexMap::new();
1585/// map.insert("foo", 1);
1586/// println!("{:?}", map["bar"]); // panics!
1587/// ```
1588impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1589where
1590    Q: Hash + Equivalent<K>,
1591    S: BuildHasher,
1592{
1593    type Output = V;
1594
1595    /// Returns a reference to the value corresponding to the supplied `key`.
1596    ///
1597    /// ***Panics*** if `key` is not present in the map.
1598    fn index(&self, key: &Q) -> &V {
1599        self.get(key).expect("no entry found for key")
1600    }
1601}
1602
1603/// Access [`IndexMap`] values corresponding to a key.
1604///
1605/// Mutable indexing allows changing / updating values of key-value
1606/// pairs that are already present.
1607///
1608/// You can **not** insert new pairs with index syntax, use `.insert()`.
1609///
1610/// # Examples
1611///
1612/// ```
1613/// use indexmap::IndexMap;
1614///
1615/// let mut map = IndexMap::new();
1616/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1617///     map.insert(word.to_lowercase(), word.to_string());
1618/// }
1619/// let lorem = &mut map["lorem"];
1620/// assert_eq!(lorem, "Lorem");
1621/// lorem.retain(char::is_lowercase);
1622/// assert_eq!(map["lorem"], "orem");
1623/// ```
1624///
1625/// ```should_panic
1626/// use indexmap::IndexMap;
1627///
1628/// let mut map = IndexMap::new();
1629/// map.insert("foo", 1);
1630/// map["bar"] = 1; // panics!
1631/// ```
1632impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1633where
1634    Q: Hash + Equivalent<K>,
1635    S: BuildHasher,
1636{
1637    /// Returns a mutable reference to the value corresponding to the supplied `key`.
1638    ///
1639    /// ***Panics*** if `key` is not present in the map.
1640    fn index_mut(&mut self, key: &Q) -> &mut V {
1641        self.get_mut(key).expect("no entry found for key")
1642    }
1643}
1644
1645/// Access [`IndexMap`] values at indexed positions.
1646///
1647/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1648///
1649/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1650///
1651/// # Examples
1652///
1653/// ```
1654/// use indexmap::IndexMap;
1655///
1656/// let mut map = IndexMap::new();
1657/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1658///     map.insert(word.to_lowercase(), word.to_uppercase());
1659/// }
1660/// assert_eq!(map[0], "LOREM");
1661/// assert_eq!(map[1], "IPSUM");
1662/// map.reverse();
1663/// assert_eq!(map[0], "AMET");
1664/// assert_eq!(map[1], "SIT");
1665/// map.sort_keys();
1666/// assert_eq!(map[0], "AMET");
1667/// assert_eq!(map[1], "DOLOR");
1668/// ```
1669///
1670/// ```should_panic
1671/// use indexmap::IndexMap;
1672///
1673/// let mut map = IndexMap::new();
1674/// map.insert("foo", 1);
1675/// println!("{:?}", map[10]); // panics!
1676/// ```
1677impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1678    type Output = V;
1679
1680    /// Returns a reference to the value at the supplied `index`.
1681    ///
1682    /// ***Panics*** if `index` is out of bounds.
1683    fn index(&self, index: usize) -> &V {
1684        if let Some((_, value)) = self.get_index(index) {
1685            value
1686        } else {
1687            panic!(
1688                "index out of bounds: the len is {len} but the index is {index}",
1689                len = self.len()
1690            );
1691        }
1692    }
1693}
1694
1695/// Access [`IndexMap`] values at indexed positions.
1696///
1697/// Mutable indexing allows changing / updating indexed values
1698/// that are already present.
1699///
1700/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1701///
1702/// # Examples
1703///
1704/// ```
1705/// use indexmap::IndexMap;
1706///
1707/// let mut map = IndexMap::new();
1708/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1709///     map.insert(word.to_lowercase(), word.to_string());
1710/// }
1711/// let lorem = &mut map[0];
1712/// assert_eq!(lorem, "Lorem");
1713/// lorem.retain(char::is_lowercase);
1714/// assert_eq!(map["lorem"], "orem");
1715/// ```
1716///
1717/// ```should_panic
1718/// use indexmap::IndexMap;
1719///
1720/// let mut map = IndexMap::new();
1721/// map.insert("foo", 1);
1722/// map[10] = 1; // panics!
1723/// ```
1724impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1725    /// Returns a mutable reference to the value at the supplied `index`.
1726    ///
1727    /// ***Panics*** if `index` is out of bounds.
1728    fn index_mut(&mut self, index: usize) -> &mut V {
1729        let len: usize = self.len();
1730
1731        if let Some((_, value)) = self.get_index_mut(index) {
1732            value
1733        } else {
1734            panic!("index out of bounds: the len is {len} but the index is {index}");
1735        }
1736    }
1737}
1738
1739impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1740where
1741    K: Hash + Eq,
1742    S: BuildHasher + Default,
1743{
1744    /// Create an `IndexMap` from the sequence of key-value pairs in the
1745    /// iterable.
1746    ///
1747    /// `from_iter` uses the same logic as `extend`. See
1748    /// [`extend`][IndexMap::extend] for more details.
1749    fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1750        let iter = iterable.into_iter();
1751        let (low, _) = iter.size_hint();
1752        let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1753        map.extend(iter);
1754        map
1755    }
1756}
1757
1758#[cfg(feature = "std")]
1759#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1760impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1761where
1762    K: Hash + Eq,
1763{
1764    /// # Examples
1765    ///
1766    /// ```
1767    /// use indexmap::IndexMap;
1768    ///
1769    /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1770    /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1771    /// assert_eq!(map1, map2);
1772    /// ```
1773    fn from(arr: [(K, V); N]) -> Self {
1774        Self::from_iter(arr)
1775    }
1776}
1777
1778impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1779where
1780    K: Hash + Eq,
1781    S: BuildHasher,
1782{
1783    /// Extend the map with all key-value pairs in the iterable.
1784    ///
1785    /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1786    /// them in order, which means that for keys that already existed
1787    /// in the map, their value is updated but it keeps the existing order.
1788    ///
1789    /// New keys are inserted in the order they appear in the sequence. If
1790    /// equivalents of a key occur more than once, the last corresponding value
1791    /// prevails.
1792    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1793        // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1794        // Keys may be already present or show multiple times in the iterator.
1795        // Reserve the entire hint lower bound if the map is empty.
1796        // Otherwise reserve half the hint (rounded up), so the map
1797        // will only resize twice in the worst case.
1798        let iter = iterable.into_iter();
1799        let reserve = if self.is_empty() {
1800            iter.size_hint().0
1801        } else {
1802            (iter.size_hint().0 + 1) / 2
1803        };
1804        self.reserve(reserve);
1805        iter.for_each(move |(k, v)| {
1806            self.insert(k, v);
1807        });
1808    }
1809}
1810
1811impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1812where
1813    K: Hash + Eq + Copy,
1814    V: Copy,
1815    S: BuildHasher,
1816{
1817    /// Extend the map with all key-value pairs in the iterable.
1818    ///
1819    /// See the first extend method for more details.
1820    fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1821        self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1822    }
1823}
1824
1825impl<K, V, S> Default for IndexMap<K, V, S>
1826where
1827    S: Default,
1828{
1829    /// Return an empty [`IndexMap`]
1830    fn default() -> Self {
1831        Self::with_capacity_and_hasher(0, S::default())
1832    }
1833}
1834
1835impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1836where
1837    K: Hash + Eq,
1838    V1: PartialEq<V2>,
1839    S1: BuildHasher,
1840    S2: BuildHasher,
1841{
1842    fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1843        if self.len() != other.len() {
1844            return false;
1845        }
1846
1847        self.iter()
1848            .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1849    }
1850}
1851
1852impl<K, V, S> Eq for IndexMap<K, V, S>
1853where
1854    K: Eq + Hash,
1855    V: Eq,
1856    S: BuildHasher,
1857{
1858}