h2/
client.rs

1//! Client implementation of the HTTP/2 protocol.
2//!
3//! # Getting started
4//!
5//! Running an HTTP/2 client requires the caller to establish the underlying
6//! connection as well as get the connection to a state that is ready to begin
7//! the HTTP/2 handshake. See [here](../index.html#handshake) for more
8//! details.
9//!
10//! This could be as basic as using Tokio's [`TcpStream`] to connect to a remote
11//! host, but usually it means using either ALPN or HTTP/1.1 protocol upgrades.
12//!
13//! Once a connection is obtained, it is passed to [`handshake`], which will
14//! begin the [HTTP/2 handshake]. This returns a future that completes once
15//! the handshake process is performed and HTTP/2 streams may be initialized.
16//!
17//! [`handshake`] uses default configuration values. There are a number of
18//! settings that can be changed by using [`Builder`] instead.
19//!
20//! Once the handshake future completes, the caller is provided with a
21//! [`Connection`] instance and a [`SendRequest`] instance. The [`Connection`]
22//! instance is used to drive the connection (see [Managing the connection]).
23//! The [`SendRequest`] instance is used to initialize new streams (see [Making
24//! requests]).
25//!
26//! # Making requests
27//!
28//! Requests are made using the [`SendRequest`] handle provided by the handshake
29//! future. Once a request is submitted, an HTTP/2 stream is initialized and
30//! the request is sent to the server.
31//!
32//! A request body and request trailers are sent using [`SendRequest`] and the
33//! server's response is returned once the [`ResponseFuture`] future completes.
34//! Both the [`SendStream`] and [`ResponseFuture`] instances are returned by
35//! [`SendRequest::send_request`] and are tied to the HTTP/2 stream
36//! initialized by the sent request.
37//!
38//! The [`SendRequest::poll_ready`] function returns `Ready` when a new HTTP/2
39//! stream can be created, i.e. as long as the current number of active streams
40//! is below [`MAX_CONCURRENT_STREAMS`]. If a new stream cannot be created, the
41//! caller will be notified once an existing stream closes, freeing capacity for
42//! the caller.  The caller should use [`SendRequest::poll_ready`] to check for
43//! capacity before sending a request to the server.
44//!
45//! [`SendRequest`] enforces the [`MAX_CONCURRENT_STREAMS`] setting. The user
46//! must not send a request if `poll_ready` does not return `Ready`. Attempting
47//! to do so will result in an [`Error`] being returned.
48//!
49//! # Managing the connection
50//!
51//! The [`Connection`] instance is used to manage connection state. The caller
52//! is required to call [`Connection::poll`] in order to advance state.
53//! [`SendRequest::send_request`] and other functions have no effect unless
54//! [`Connection::poll`] is called.
55//!
56//! The [`Connection`] instance should only be dropped once [`Connection::poll`]
57//! returns `Ready`. At this point, the underlying socket has been closed and no
58//! further work needs to be done.
59//!
60//! The easiest way to ensure that the [`Connection`] instance gets polled is to
61//! submit the [`Connection`] instance to an [executor]. The executor will then
62//! manage polling the connection until the connection is complete.
63//! Alternatively, the caller can call `poll` manually.
64//!
65//! # Example
66//!
67//! ```rust, no_run
68//!
69//! use h2::client;
70//!
71//! use http::{Request, Method};
72//! use std::error::Error;
73//! use tokio::net::TcpStream;
74//!
75//! #[tokio::main]
76//! pub async fn main() -> Result<(), Box<dyn Error>> {
77//!     // Establish TCP connection to the server.
78//!     let tcp = TcpStream::connect("127.0.0.1:5928").await?;
79//!     let (h2, connection) = client::handshake(tcp).await?;
80//!     tokio::spawn(async move {
81//!         connection.await.unwrap();
82//!     });
83//!
84//!     let mut h2 = h2.ready().await?;
85//!     // Prepare the HTTP request to send to the server.
86//!     let request = Request::builder()
87//!                     .method(Method::GET)
88//!                     .uri("https://www.example.com/")
89//!                     .body(())
90//!                     .unwrap();
91//!
92//!     // Send the request. The second tuple item allows the caller
93//!     // to stream a request body.
94//!     let (response, _) = h2.send_request(request, true).unwrap();
95//!
96//!     let (head, mut body) = response.await?.into_parts();
97//!
98//!     println!("Received response: {:?}", head);
99//!
100//!     // The `flow_control` handle allows the caller to manage
101//!     // flow control.
102//!     //
103//!     // Whenever data is received, the caller is responsible for
104//!     // releasing capacity back to the server once it has freed
105//!     // the data from memory.
106//!     let mut flow_control = body.flow_control().clone();
107//!
108//!     while let Some(chunk) = body.data().await {
109//!         let chunk = chunk?;
110//!         println!("RX: {:?}", chunk);
111//!
112//!         // Let the server send more data.
113//!         let _ = flow_control.release_capacity(chunk.len());
114//!     }
115//!
116//!     Ok(())
117//! }
118//! ```
119//!
120//! [`TcpStream`]: https://docs.rs/tokio-core/0.1/tokio_core/net/struct.TcpStream.html
121//! [`handshake`]: fn.handshake.html
122//! [executor]: https://docs.rs/futures/0.1/futures/future/trait.Executor.html
123//! [`SendRequest`]: struct.SendRequest.html
124//! [`SendStream`]: ../struct.SendStream.html
125//! [Making requests]: #making-requests
126//! [Managing the connection]: #managing-the-connection
127//! [`Connection`]: struct.Connection.html
128//! [`Connection::poll`]: struct.Connection.html#method.poll
129//! [`SendRequest::send_request`]: struct.SendRequest.html#method.send_request
130//! [`MAX_CONCURRENT_STREAMS`]: http://httpwg.org/specs/rfc7540.html#SettingValues
131//! [`SendRequest`]: struct.SendRequest.html
132//! [`ResponseFuture`]: struct.ResponseFuture.html
133//! [`SendRequest::poll_ready`]: struct.SendRequest.html#method.poll_ready
134//! [HTTP/2 handshake]: http://httpwg.org/specs/rfc7540.html#ConnectionHeader
135//! [`Builder`]: struct.Builder.html
136//! [`Error`]: ../struct.Error.html
137
138use crate::codec::{Codec, SendError, UserError};
139use crate::ext::Protocol;
140use crate::frame::{Headers, Pseudo, Reason, Settings, StreamId};
141use crate::proto::{self, Error};
142use crate::{FlowControl, PingPong, RecvStream, SendStream};
143
144use bytes::{Buf, Bytes};
145use http::{uri, HeaderMap, Method, Request, Response, Version};
146use std::fmt;
147use std::future::Future;
148use std::pin::Pin;
149use std::task::{Context, Poll};
150use std::time::Duration;
151use std::usize;
152use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt};
153use tracing::Instrument;
154
155/// Initializes new HTTP/2 streams on a connection by sending a request.
156///
157/// This type does no work itself. Instead, it is a handle to the inner
158/// connection state held by [`Connection`]. If the associated connection
159/// instance is dropped, all `SendRequest` functions will return [`Error`].
160///
161/// [`SendRequest`] instances are able to move to and operate on separate tasks
162/// / threads than their associated [`Connection`] instance. Internally, there
163/// is a buffer used to stage requests before they get written to the
164/// connection. There is no guarantee that requests get written to the
165/// connection in FIFO order as HTTP/2 prioritization logic can play a role.
166///
167/// [`SendRequest`] implements [`Clone`], enabling the creation of many
168/// instances that are backed by a single connection.
169///
170/// See [module] level documentation for more details.
171///
172/// [module]: index.html
173/// [`Connection`]: struct.Connection.html
174/// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html
175/// [`Error`]: ../struct.Error.html
176pub struct SendRequest<B: Buf> {
177    inner: proto::Streams<B, Peer>,
178    pending: Option<proto::OpaqueStreamRef>,
179}
180
181/// Returns a `SendRequest` instance once it is ready to send at least one
182/// request.
183#[derive(Debug)]
184pub struct ReadySendRequest<B: Buf> {
185    inner: Option<SendRequest<B>>,
186}
187
188/// Manages all state associated with an HTTP/2 client connection.
189///
190/// A `Connection` is backed by an I/O resource (usually a TCP socket) and
191/// implements the HTTP/2 client logic for that connection. It is responsible
192/// for driving the internal state forward, performing the work requested of the
193/// associated handles ([`SendRequest`], [`ResponseFuture`], [`SendStream`],
194/// [`RecvStream`]).
195///
196/// `Connection` values are created by calling [`handshake`]. Once a
197/// `Connection` value is obtained, the caller must repeatedly call [`poll`]
198/// until `Ready` is returned. The easiest way to do this is to submit the
199/// `Connection` instance to an [executor].
200///
201/// [module]: index.html
202/// [`handshake`]: fn.handshake.html
203/// [`SendRequest`]: struct.SendRequest.html
204/// [`ResponseFuture`]: struct.ResponseFuture.html
205/// [`SendStream`]: ../struct.SendStream.html
206/// [`RecvStream`]: ../struct.RecvStream.html
207/// [`poll`]: #method.poll
208/// [executor]: https://docs.rs/futures/0.1/futures/future/trait.Executor.html
209///
210/// # Examples
211///
212/// ```
213/// # use tokio::io::{AsyncRead, AsyncWrite};
214/// # use h2::client;
215/// # use h2::client::*;
216/// #
217/// # async fn doc<T>(my_io: T) -> Result<(), h2::Error>
218/// # where T: AsyncRead + AsyncWrite + Send + Unpin + 'static,
219/// # {
220///     let (send_request, connection) = client::handshake(my_io).await?;
221///     // Submit the connection handle to an executor.
222///     tokio::spawn(async { connection.await.expect("connection failed"); });
223///
224///     // Now, use `send_request` to initialize HTTP/2 streams.
225///     // ...
226/// # Ok(())
227/// # }
228/// #
229/// # pub fn main() {}
230/// ```
231#[must_use = "futures do nothing unless polled"]
232pub struct Connection<T, B: Buf = Bytes> {
233    inner: proto::Connection<T, Peer, B>,
234}
235
236/// A future of an HTTP response.
237#[derive(Debug)]
238#[must_use = "futures do nothing unless polled"]
239pub struct ResponseFuture {
240    inner: proto::OpaqueStreamRef,
241    push_promise_consumed: bool,
242}
243
244/// A future of a pushed HTTP response.
245///
246/// We have to differentiate between pushed and non pushed because of the spec
247/// <https://httpwg.org/specs/rfc7540.html#PUSH_PROMISE>
248/// > PUSH_PROMISE frames MUST only be sent on a peer-initiated stream
249/// > that is in either the "open" or "half-closed (remote)" state.
250#[derive(Debug)]
251#[must_use = "futures do nothing unless polled"]
252pub struct PushedResponseFuture {
253    inner: ResponseFuture,
254}
255
256/// A pushed response and corresponding request headers
257#[derive(Debug)]
258pub struct PushPromise {
259    /// The request headers
260    request: Request<()>,
261
262    /// The pushed response
263    response: PushedResponseFuture,
264}
265
266/// A stream of pushed responses and corresponding promised requests
267#[derive(Debug)]
268#[must_use = "streams do nothing unless polled"]
269pub struct PushPromises {
270    inner: proto::OpaqueStreamRef,
271}
272
273/// Builds client connections with custom configuration values.
274///
275/// Methods can be chained in order to set the configuration values.
276///
277/// The client is constructed by calling [`handshake`] and passing the I/O
278/// handle that will back the HTTP/2 server.
279///
280/// New instances of `Builder` are obtained via [`Builder::new`].
281///
282/// See function level documentation for details on the various client
283/// configuration settings.
284///
285/// [`Builder::new`]: struct.Builder.html#method.new
286/// [`handshake`]: struct.Builder.html#method.handshake
287///
288/// # Examples
289///
290/// ```
291/// # use tokio::io::{AsyncRead, AsyncWrite};
292/// # use h2::client::*;
293/// # use bytes::Bytes;
294/// #
295/// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
296///     -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
297/// # {
298/// // `client_fut` is a future representing the completion of the HTTP/2
299/// // handshake.
300/// let client_fut = Builder::new()
301///     .initial_window_size(1_000_000)
302///     .max_concurrent_streams(1000)
303///     .handshake(my_io);
304/// # client_fut.await
305/// # }
306/// #
307/// # pub fn main() {}
308/// ```
309#[derive(Clone, Debug)]
310pub struct Builder {
311    /// Time to keep locally reset streams around before reaping.
312    reset_stream_duration: Duration,
313
314    /// Initial maximum number of locally initiated (send) streams.
315    /// After receiving a Settings frame from the remote peer,
316    /// the connection will overwrite this value with the
317    /// MAX_CONCURRENT_STREAMS specified in the frame.
318    initial_max_send_streams: usize,
319
320    /// Initial target window size for new connections.
321    initial_target_connection_window_size: Option<u32>,
322
323    /// Maximum amount of bytes to "buffer" for writing per stream.
324    max_send_buffer_size: usize,
325
326    /// Maximum number of locally reset streams to keep at a time.
327    reset_stream_max: usize,
328
329    /// Maximum number of remotely reset streams to allow in the pending
330    /// accept queue.
331    pending_accept_reset_stream_max: usize,
332
333    /// Initial `Settings` frame to send as part of the handshake.
334    settings: Settings,
335
336    /// The stream ID of the first (lowest) stream. Subsequent streams will use
337    /// monotonically increasing stream IDs.
338    stream_id: StreamId,
339
340    /// Maximum number of locally reset streams due to protocol error across
341    /// the lifetime of the connection.
342    ///
343    /// When this gets exceeded, we issue GOAWAYs.
344    local_max_error_reset_streams: Option<usize>,
345}
346
347#[derive(Debug)]
348pub(crate) struct Peer;
349
350// ===== impl SendRequest =====
351
352impl<B> SendRequest<B>
353where
354    B: Buf,
355{
356    /// Returns `Ready` when the connection can initialize a new HTTP/2
357    /// stream.
358    ///
359    /// This function must return `Ready` before `send_request` is called. When
360    /// `Poll::Pending` is returned, the task will be notified once the readiness
361    /// state changes.
362    ///
363    /// See [module] level docs for more details.
364    ///
365    /// [module]: index.html
366    pub fn poll_ready(&mut self, cx: &mut Context) -> Poll<Result<(), crate::Error>> {
367        ready!(self.inner.poll_pending_open(cx, self.pending.as_ref()))?;
368        self.pending = None;
369        Poll::Ready(Ok(()))
370    }
371
372    /// Consumes `self`, returning a future that returns `self` back once it is
373    /// ready to send a request.
374    ///
375    /// This function should be called before calling `send_request`.
376    ///
377    /// This is a functional combinator for [`poll_ready`]. The returned future
378    /// will call `SendStream::poll_ready` until `Ready`, then returns `self` to
379    /// the caller.
380    ///
381    /// # Examples
382    ///
383    /// ```rust
384    /// # use h2::client::*;
385    /// # use http::*;
386    /// # async fn doc(send_request: SendRequest<&'static [u8]>)
387    /// # {
388    /// // First, wait until the `send_request` handle is ready to send a new
389    /// // request
390    /// let mut send_request = send_request.ready().await.unwrap();
391    /// // Use `send_request` here.
392    /// # }
393    /// # pub fn main() {}
394    /// ```
395    ///
396    /// See [module] level docs for more details.
397    ///
398    /// [`poll_ready`]: #method.poll_ready
399    /// [module]: index.html
400    pub fn ready(self) -> ReadySendRequest<B> {
401        ReadySendRequest { inner: Some(self) }
402    }
403
404    /// Sends a HTTP/2 request to the server.
405    ///
406    /// `send_request` initializes a new HTTP/2 stream on the associated
407    /// connection, then sends the given request using this new stream. Only the
408    /// request head is sent.
409    ///
410    /// On success, a [`ResponseFuture`] instance and [`SendStream`] instance
411    /// are returned. The [`ResponseFuture`] instance is used to get the
412    /// server's response and the [`SendStream`] instance is used to send a
413    /// request body or trailers to the server over the same HTTP/2 stream.
414    ///
415    /// To send a request body or trailers, set `end_of_stream` to `false`.
416    /// Then, use the returned [`SendStream`] instance to stream request body
417    /// chunks or send trailers. If `end_of_stream` is **not** set to `false`
418    /// then attempting to call [`SendStream::send_data`] or
419    /// [`SendStream::send_trailers`] will result in an error.
420    ///
421    /// If no request body or trailers are to be sent, set `end_of_stream` to
422    /// `true` and drop the returned [`SendStream`] instance.
423    ///
424    /// # A note on HTTP versions
425    ///
426    /// The provided `Request` will be encoded differently depending on the
427    /// value of its version field. If the version is set to 2.0, then the
428    /// request is encoded as per the specification recommends.
429    ///
430    /// If the version is set to a lower value, then the request is encoded to
431    /// preserve the characteristics of HTTP 1.1 and lower. Specifically, host
432    /// headers are permitted and the `:authority` pseudo header is not
433    /// included.
434    ///
435    /// The caller should always set the request's version field to 2.0 unless
436    /// specifically transmitting an HTTP 1.1 request over 2.0.
437    ///
438    /// # Examples
439    ///
440    /// Sending a request with no body
441    ///
442    /// ```rust
443    /// # use h2::client::*;
444    /// # use http::*;
445    /// # async fn doc(send_request: SendRequest<&'static [u8]>)
446    /// # {
447    /// // First, wait until the `send_request` handle is ready to send a new
448    /// // request
449    /// let mut send_request = send_request.ready().await.unwrap();
450    /// // Prepare the HTTP request to send to the server.
451    /// let request = Request::get("https://www.example.com/")
452    ///     .body(())
453    ///     .unwrap();
454    ///
455    /// // Send the request to the server. Since we are not sending a
456    /// // body or trailers, we can drop the `SendStream` instance.
457    /// let (response, _) = send_request.send_request(request, true).unwrap();
458    /// let response = response.await.unwrap();
459    /// // Process the response
460    /// # }
461    /// # pub fn main() {}
462    /// ```
463    ///
464    /// Sending a request with a body and trailers
465    ///
466    /// ```rust
467    /// # use h2::client::*;
468    /// # use http::*;
469    /// # async fn doc(send_request: SendRequest<&'static [u8]>)
470    /// # {
471    /// // First, wait until the `send_request` handle is ready to send a new
472    /// // request
473    /// let mut send_request = send_request.ready().await.unwrap();
474    ///
475    /// // Prepare the HTTP request to send to the server.
476    /// let request = Request::get("https://www.example.com/")
477    ///     .body(())
478    ///     .unwrap();
479    ///
480    /// // Send the request to the server. If we are not sending a
481    /// // body or trailers, we can drop the `SendStream` instance.
482    /// let (response, mut send_stream) = send_request
483    ///     .send_request(request, false).unwrap();
484    ///
485    /// // At this point, one option would be to wait for send capacity.
486    /// // Doing so would allow us to not hold data in memory that
487    /// // cannot be sent. However, this is not a requirement, so this
488    /// // example will skip that step. See `SendStream` documentation
489    /// // for more details.
490    /// send_stream.send_data(b"hello", false).unwrap();
491    /// send_stream.send_data(b"world", false).unwrap();
492    ///
493    /// // Send the trailers.
494    /// let mut trailers = HeaderMap::new();
495    /// trailers.insert(
496    ///     header::HeaderName::from_bytes(b"my-trailer").unwrap(),
497    ///     header::HeaderValue::from_bytes(b"hello").unwrap());
498    ///
499    /// send_stream.send_trailers(trailers).unwrap();
500    ///
501    /// let response = response.await.unwrap();
502    /// // Process the response
503    /// # }
504    /// # pub fn main() {}
505    /// ```
506    ///
507    /// [`ResponseFuture`]: struct.ResponseFuture.html
508    /// [`SendStream`]: ../struct.SendStream.html
509    /// [`SendStream::send_data`]: ../struct.SendStream.html#method.send_data
510    /// [`SendStream::send_trailers`]: ../struct.SendStream.html#method.send_trailers
511    pub fn send_request(
512        &mut self,
513        request: Request<()>,
514        end_of_stream: bool,
515    ) -> Result<(ResponseFuture, SendStream<B>), crate::Error> {
516        self.inner
517            .send_request(request, end_of_stream, self.pending.as_ref())
518            .map_err(Into::into)
519            .map(|(stream, is_full)| {
520                if stream.is_pending_open() && is_full {
521                    // Only prevent sending another request when the request queue
522                    // is not full.
523                    self.pending = Some(stream.clone_to_opaque());
524                }
525
526                let response = ResponseFuture {
527                    inner: stream.clone_to_opaque(),
528                    push_promise_consumed: false,
529                };
530
531                let stream = SendStream::new(stream);
532
533                (response, stream)
534            })
535    }
536
537    /// Returns whether the [extended CONNECT protocol][1] is enabled or not.
538    ///
539    /// This setting is configured by the server peer by sending the
540    /// [`SETTINGS_ENABLE_CONNECT_PROTOCOL` parameter][2] in a `SETTINGS` frame.
541    /// This method returns the currently acknowledged value received from the
542    /// remote.
543    ///
544    /// [1]: https://datatracker.ietf.org/doc/html/rfc8441#section-4
545    /// [2]: https://datatracker.ietf.org/doc/html/rfc8441#section-3
546    pub fn is_extended_connect_protocol_enabled(&self) -> bool {
547        self.inner.is_extended_connect_protocol_enabled()
548    }
549}
550
551impl<B> fmt::Debug for SendRequest<B>
552where
553    B: Buf,
554{
555    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
556        fmt.debug_struct("SendRequest").finish()
557    }
558}
559
560impl<B> Clone for SendRequest<B>
561where
562    B: Buf,
563{
564    fn clone(&self) -> Self {
565        SendRequest {
566            inner: self.inner.clone(),
567            pending: None,
568        }
569    }
570}
571
572#[cfg(feature = "unstable")]
573impl<B> SendRequest<B>
574where
575    B: Buf,
576{
577    /// Returns the number of active streams.
578    ///
579    /// An active stream is a stream that has not yet transitioned to a closed
580    /// state.
581    pub fn num_active_streams(&self) -> usize {
582        self.inner.num_active_streams()
583    }
584
585    /// Returns the number of streams that are held in memory.
586    ///
587    /// A wired stream is a stream that is either active or is closed but must
588    /// stay in memory for some reason. For example, there are still outstanding
589    /// userspace handles pointing to the slot.
590    pub fn num_wired_streams(&self) -> usize {
591        self.inner.num_wired_streams()
592    }
593}
594
595// ===== impl ReadySendRequest =====
596
597impl<B> Future for ReadySendRequest<B>
598where
599    B: Buf,
600{
601    type Output = Result<SendRequest<B>, crate::Error>;
602
603    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
604        match &mut self.inner {
605            Some(send_request) => {
606                ready!(send_request.poll_ready(cx))?;
607            }
608            None => panic!("called `poll` after future completed"),
609        }
610
611        Poll::Ready(Ok(self.inner.take().unwrap()))
612    }
613}
614
615// ===== impl Builder =====
616
617impl Builder {
618    /// Returns a new client builder instance initialized with default
619    /// configuration values.
620    ///
621    /// Configuration methods can be chained on the return value.
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// # use tokio::io::{AsyncRead, AsyncWrite};
627    /// # use h2::client::*;
628    /// # use bytes::Bytes;
629    /// #
630    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
631    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
632    /// # {
633    /// // `client_fut` is a future representing the completion of the HTTP/2
634    /// // handshake.
635    /// let client_fut = Builder::new()
636    ///     .initial_window_size(1_000_000)
637    ///     .max_concurrent_streams(1000)
638    ///     .handshake(my_io);
639    /// # client_fut.await
640    /// # }
641    /// #
642    /// # pub fn main() {}
643    /// ```
644    pub fn new() -> Builder {
645        Builder {
646            max_send_buffer_size: proto::DEFAULT_MAX_SEND_BUFFER_SIZE,
647            reset_stream_duration: Duration::from_secs(proto::DEFAULT_RESET_STREAM_SECS),
648            reset_stream_max: proto::DEFAULT_RESET_STREAM_MAX,
649            pending_accept_reset_stream_max: proto::DEFAULT_REMOTE_RESET_STREAM_MAX,
650            initial_target_connection_window_size: None,
651            initial_max_send_streams: usize::MAX,
652            settings: Default::default(),
653            stream_id: 1.into(),
654            local_max_error_reset_streams: Some(proto::DEFAULT_LOCAL_RESET_COUNT_MAX),
655        }
656    }
657
658    /// Indicates the initial window size (in octets) for stream-level
659    /// flow control for received data.
660    ///
661    /// The initial window of a stream is used as part of flow control. For more
662    /// details, see [`FlowControl`].
663    ///
664    /// The default value is 65,535.
665    ///
666    /// [`FlowControl`]: ../struct.FlowControl.html
667    ///
668    /// # Examples
669    ///
670    /// ```
671    /// # use tokio::io::{AsyncRead, AsyncWrite};
672    /// # use h2::client::*;
673    /// # use bytes::Bytes;
674    /// #
675    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
676    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
677    /// # {
678    /// // `client_fut` is a future representing the completion of the HTTP/2
679    /// // handshake.
680    /// let client_fut = Builder::new()
681    ///     .initial_window_size(1_000_000)
682    ///     .handshake(my_io);
683    /// # client_fut.await
684    /// # }
685    /// #
686    /// # pub fn main() {}
687    /// ```
688    pub fn initial_window_size(&mut self, size: u32) -> &mut Self {
689        self.settings.set_initial_window_size(Some(size));
690        self
691    }
692
693    /// Indicates the initial window size (in octets) for connection-level flow control
694    /// for received data.
695    ///
696    /// The initial window of a connection is used as part of flow control. For more details,
697    /// see [`FlowControl`].
698    ///
699    /// The default value is 65,535.
700    ///
701    /// [`FlowControl`]: ../struct.FlowControl.html
702    ///
703    /// # Examples
704    ///
705    /// ```
706    /// # use tokio::io::{AsyncRead, AsyncWrite};
707    /// # use h2::client::*;
708    /// # use bytes::Bytes;
709    /// #
710    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
711    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
712    /// # {
713    /// // `client_fut` is a future representing the completion of the HTTP/2
714    /// // handshake.
715    /// let client_fut = Builder::new()
716    ///     .initial_connection_window_size(1_000_000)
717    ///     .handshake(my_io);
718    /// # client_fut.await
719    /// # }
720    /// #
721    /// # pub fn main() {}
722    /// ```
723    pub fn initial_connection_window_size(&mut self, size: u32) -> &mut Self {
724        self.initial_target_connection_window_size = Some(size);
725        self
726    }
727
728    /// Indicates the size (in octets) of the largest HTTP/2 frame payload that the
729    /// configured client is able to accept.
730    ///
731    /// The sender may send data frames that are **smaller** than this value,
732    /// but any data larger than `max` will be broken up into multiple `DATA`
733    /// frames.
734    ///
735    /// The value **must** be between 16,384 and 16,777,215. The default value is 16,384.
736    ///
737    /// # Examples
738    ///
739    /// ```
740    /// # use tokio::io::{AsyncRead, AsyncWrite};
741    /// # use h2::client::*;
742    /// # use bytes::Bytes;
743    /// #
744    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
745    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
746    /// # {
747    /// // `client_fut` is a future representing the completion of the HTTP/2
748    /// // handshake.
749    /// let client_fut = Builder::new()
750    ///     .max_frame_size(1_000_000)
751    ///     .handshake(my_io);
752    /// # client_fut.await
753    /// # }
754    /// #
755    /// # pub fn main() {}
756    /// ```
757    ///
758    /// # Panics
759    ///
760    /// This function panics if `max` is not within the legal range specified
761    /// above.
762    pub fn max_frame_size(&mut self, max: u32) -> &mut Self {
763        self.settings.set_max_frame_size(Some(max));
764        self
765    }
766
767    /// Sets the max size of received header frames.
768    ///
769    /// This advisory setting informs a peer of the maximum size of header list
770    /// that the sender is prepared to accept, in octets. The value is based on
771    /// the uncompressed size of header fields, including the length of the name
772    /// and value in octets plus an overhead of 32 octets for each header field.
773    ///
774    /// This setting is also used to limit the maximum amount of data that is
775    /// buffered to decode HEADERS frames.
776    ///
777    /// # Examples
778    ///
779    /// ```
780    /// # use tokio::io::{AsyncRead, AsyncWrite};
781    /// # use h2::client::*;
782    /// # use bytes::Bytes;
783    /// #
784    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
785    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
786    /// # {
787    /// // `client_fut` is a future representing the completion of the HTTP/2
788    /// // handshake.
789    /// let client_fut = Builder::new()
790    ///     .max_header_list_size(16 * 1024)
791    ///     .handshake(my_io);
792    /// # client_fut.await
793    /// # }
794    /// #
795    /// # pub fn main() {}
796    /// ```
797    pub fn max_header_list_size(&mut self, max: u32) -> &mut Self {
798        self.settings.set_max_header_list_size(Some(max));
799        self
800    }
801
802    /// Sets the maximum number of concurrent streams.
803    ///
804    /// The maximum concurrent streams setting only controls the maximum number
805    /// of streams that can be initiated by the remote peer. In other words,
806    /// when this setting is set to 100, this does not limit the number of
807    /// concurrent streams that can be created by the caller.
808    ///
809    /// It is recommended that this value be no smaller than 100, so as to not
810    /// unnecessarily limit parallelism. However, any value is legal, including
811    /// 0. If `max` is set to 0, then the remote will not be permitted to
812    /// initiate streams.
813    ///
814    /// Note that streams in the reserved state, i.e., push promises that have
815    /// been reserved but the stream has not started, do not count against this
816    /// setting.
817    ///
818    /// Also note that if the remote *does* exceed the value set here, it is not
819    /// a protocol level error. Instead, the `h2` library will immediately reset
820    /// the stream.
821    ///
822    /// See [Section 5.1.2] in the HTTP/2 spec for more details.
823    ///
824    /// [Section 5.1.2]: https://http2.github.io/http2-spec/#rfc.section.5.1.2
825    ///
826    /// # Examples
827    ///
828    /// ```
829    /// # use tokio::io::{AsyncRead, AsyncWrite};
830    /// # use h2::client::*;
831    /// # use bytes::Bytes;
832    /// #
833    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
834    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
835    /// # {
836    /// // `client_fut` is a future representing the completion of the HTTP/2
837    /// // handshake.
838    /// let client_fut = Builder::new()
839    ///     .max_concurrent_streams(1000)
840    ///     .handshake(my_io);
841    /// # client_fut.await
842    /// # }
843    /// #
844    /// # pub fn main() {}
845    /// ```
846    pub fn max_concurrent_streams(&mut self, max: u32) -> &mut Self {
847        self.settings.set_max_concurrent_streams(Some(max));
848        self
849    }
850
851    /// Sets the initial maximum of locally initiated (send) streams.
852    ///
853    /// The initial settings will be overwritten by the remote peer when
854    /// the Settings frame is received. The new value will be set to the
855    /// `max_concurrent_streams()` from the frame.
856    ///
857    /// This setting prevents the caller from exceeding this number of
858    /// streams that are counted towards the concurrency limit.
859    ///
860    /// Sending streams past the limit returned by the peer will be treated
861    /// as a stream error of type PROTOCOL_ERROR or REFUSED_STREAM.
862    ///
863    /// See [Section 5.1.2] in the HTTP/2 spec for more details.
864    ///
865    /// [Section 5.1.2]: https://http2.github.io/http2-spec/#rfc.section.5.1.2
866    ///
867    /// # Examples
868    ///
869    /// ```
870    /// # use tokio::io::{AsyncRead, AsyncWrite};
871    /// # use h2::client::*;
872    /// # use bytes::Bytes;
873    /// #
874    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
875    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
876    /// # {
877    /// // `client_fut` is a future representing the completion of the HTTP/2
878    /// // handshake.
879    /// let client_fut = Builder::new()
880    ///     .initial_max_send_streams(1000)
881    ///     .handshake(my_io);
882    /// # client_fut.await
883    /// # }
884    /// #
885    /// # pub fn main() {}
886    /// ```
887    pub fn initial_max_send_streams(&mut self, initial: usize) -> &mut Self {
888        self.initial_max_send_streams = initial;
889        self
890    }
891
892    /// Sets the maximum number of concurrent locally reset streams.
893    ///
894    /// When a stream is explicitly reset, the HTTP/2 specification requires
895    /// that any further frames received for that stream must be ignored for
896    /// "some time".
897    ///
898    /// In order to satisfy the specification, internal state must be maintained
899    /// to implement the behavior. This state grows linearly with the number of
900    /// streams that are locally reset.
901    ///
902    /// The `max_concurrent_reset_streams` setting configures sets an upper
903    /// bound on the amount of state that is maintained. When this max value is
904    /// reached, the oldest reset stream is purged from memory.
905    ///
906    /// Once the stream has been fully purged from memory, any additional frames
907    /// received for that stream will result in a connection level protocol
908    /// error, forcing the connection to terminate.
909    ///
910    /// The default value is 10.
911    ///
912    /// # Examples
913    ///
914    /// ```
915    /// # use tokio::io::{AsyncRead, AsyncWrite};
916    /// # use h2::client::*;
917    /// # use bytes::Bytes;
918    /// #
919    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
920    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
921    /// # {
922    /// // `client_fut` is a future representing the completion of the HTTP/2
923    /// // handshake.
924    /// let client_fut = Builder::new()
925    ///     .max_concurrent_reset_streams(1000)
926    ///     .handshake(my_io);
927    /// # client_fut.await
928    /// # }
929    /// #
930    /// # pub fn main() {}
931    /// ```
932    pub fn max_concurrent_reset_streams(&mut self, max: usize) -> &mut Self {
933        self.reset_stream_max = max;
934        self
935    }
936
937    /// Sets the duration to remember locally reset streams.
938    ///
939    /// When a stream is explicitly reset, the HTTP/2 specification requires
940    /// that any further frames received for that stream must be ignored for
941    /// "some time".
942    ///
943    /// In order to satisfy the specification, internal state must be maintained
944    /// to implement the behavior. This state grows linearly with the number of
945    /// streams that are locally reset.
946    ///
947    /// The `reset_stream_duration` setting configures the max amount of time
948    /// this state will be maintained in memory. Once the duration elapses, the
949    /// stream state is purged from memory.
950    ///
951    /// Once the stream has been fully purged from memory, any additional frames
952    /// received for that stream will result in a connection level protocol
953    /// error, forcing the connection to terminate.
954    ///
955    /// The default value is 30 seconds.
956    ///
957    /// # Examples
958    ///
959    /// ```
960    /// # use tokio::io::{AsyncRead, AsyncWrite};
961    /// # use h2::client::*;
962    /// # use std::time::Duration;
963    /// # use bytes::Bytes;
964    /// #
965    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
966    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
967    /// # {
968    /// // `client_fut` is a future representing the completion of the HTTP/2
969    /// // handshake.
970    /// let client_fut = Builder::new()
971    ///     .reset_stream_duration(Duration::from_secs(10))
972    ///     .handshake(my_io);
973    /// # client_fut.await
974    /// # }
975    /// #
976    /// # pub fn main() {}
977    /// ```
978    pub fn reset_stream_duration(&mut self, dur: Duration) -> &mut Self {
979        self.reset_stream_duration = dur;
980        self
981    }
982
983    /// Sets the maximum number of local resets due to protocol errors made by the remote end.
984    ///
985    /// Invalid frames and many other protocol errors will lead to resets being generated for those streams.
986    /// Too many of these often indicate a malicious client, and there are attacks which can abuse this to DOS servers.
987    /// This limit protects against these DOS attacks by limiting the amount of resets we can be forced to generate.
988    ///
989    /// When the number of local resets exceeds this threshold, the client will close the connection.
990    ///
991    /// If you really want to disable this, supply [`Option::None`] here.
992    /// Disabling this is not recommended and may expose you to DOS attacks.
993    ///
994    /// The default value is currently 1024, but could change.
995    pub fn max_local_error_reset_streams(&mut self, max: Option<usize>) -> &mut Self {
996        self.local_max_error_reset_streams = max;
997        self
998    }
999
1000    /// Sets the maximum number of pending-accept remotely-reset streams.
1001    ///
1002    /// Streams that have been received by the peer, but not accepted by the
1003    /// user, can also receive a RST_STREAM. This is a legitimate pattern: one
1004    /// could send a request and then shortly after, realize it is not needed,
1005    /// sending a CANCEL.
1006    ///
1007    /// However, since those streams are now "closed", they don't count towards
1008    /// the max concurrent streams. So, they will sit in the accept queue,
1009    /// using memory.
1010    ///
1011    /// When the number of remotely-reset streams sitting in the pending-accept
1012    /// queue reaches this maximum value, a connection error with the code of
1013    /// `ENHANCE_YOUR_CALM` will be sent to the peer, and returned by the
1014    /// `Future`.
1015    ///
1016    /// The default value is currently 20, but could change.
1017    ///
1018    /// # Examples
1019    ///
1020    /// ```
1021    /// # use tokio::io::{AsyncRead, AsyncWrite};
1022    /// # use h2::client::*;
1023    /// # use bytes::Bytes;
1024    /// #
1025    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1026    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
1027    /// # {
1028    /// // `client_fut` is a future representing the completion of the HTTP/2
1029    /// // handshake.
1030    /// let client_fut = Builder::new()
1031    ///     .max_pending_accept_reset_streams(100)
1032    ///     .handshake(my_io);
1033    /// # client_fut.await
1034    /// # }
1035    /// #
1036    /// # pub fn main() {}
1037    /// ```
1038    pub fn max_pending_accept_reset_streams(&mut self, max: usize) -> &mut Self {
1039        self.pending_accept_reset_stream_max = max;
1040        self
1041    }
1042
1043    /// Sets the maximum send buffer size per stream.
1044    ///
1045    /// Once a stream has buffered up to (or over) the maximum, the stream's
1046    /// flow control will not "poll" additional capacity. Once bytes for the
1047    /// stream have been written to the connection, the send buffer capacity
1048    /// will be freed up again.
1049    ///
1050    /// The default is currently ~400KB, but may change.
1051    ///
1052    /// # Panics
1053    ///
1054    /// This function panics if `max` is larger than `u32::MAX`.
1055    pub fn max_send_buffer_size(&mut self, max: usize) -> &mut Self {
1056        assert!(max <= std::u32::MAX as usize);
1057        self.max_send_buffer_size = max;
1058        self
1059    }
1060
1061    /// Enables or disables server push promises.
1062    ///
1063    /// This value is included in the initial SETTINGS handshake.
1064    /// Setting this value to value to
1065    /// false in the initial SETTINGS handshake guarantees that the remote server
1066    /// will never send a push promise.
1067    ///
1068    /// This setting can be changed during the life of a single HTTP/2
1069    /// connection by sending another settings frame updating the value.
1070    ///
1071    /// Default value: `true`.
1072    ///
1073    /// # Examples
1074    ///
1075    /// ```
1076    /// # use tokio::io::{AsyncRead, AsyncWrite};
1077    /// # use h2::client::*;
1078    /// # use std::time::Duration;
1079    /// # use bytes::Bytes;
1080    /// #
1081    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1082    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
1083    /// # {
1084    /// // `client_fut` is a future representing the completion of the HTTP/2
1085    /// // handshake.
1086    /// let client_fut = Builder::new()
1087    ///     .enable_push(false)
1088    ///     .handshake(my_io);
1089    /// # client_fut.await
1090    /// # }
1091    /// #
1092    /// # pub fn main() {}
1093    /// ```
1094    pub fn enable_push(&mut self, enabled: bool) -> &mut Self {
1095        self.settings.set_enable_push(enabled);
1096        self
1097    }
1098
1099    /// Sets the header table size.
1100    ///
1101    /// This setting informs the peer of the maximum size of the header compression
1102    /// table used to encode header blocks, in octets. The encoder may select any value
1103    /// equal to or less than the header table size specified by the sender.
1104    ///
1105    /// The default value is 4,096.
1106    ///
1107    /// # Examples
1108    ///
1109    /// ```
1110    /// # use tokio::io::{AsyncRead, AsyncWrite};
1111    /// # use h2::client::*;
1112    /// # use bytes::Bytes;
1113    /// #
1114    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1115    /// # -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
1116    /// # {
1117    /// // `client_fut` is a future representing the completion of the HTTP/2
1118    /// // handshake.
1119    /// let client_fut = Builder::new()
1120    ///     .header_table_size(1_000_000)
1121    ///     .handshake(my_io);
1122    /// # client_fut.await
1123    /// # }
1124    /// #
1125    /// # pub fn main() {}
1126    /// ```
1127    pub fn header_table_size(&mut self, size: u32) -> &mut Self {
1128        self.settings.set_header_table_size(Some(size));
1129        self
1130    }
1131
1132    /// Sets the first stream ID to something other than 1.
1133    #[cfg(feature = "unstable")]
1134    pub fn initial_stream_id(&mut self, stream_id: u32) -> &mut Self {
1135        self.stream_id = stream_id.into();
1136        assert!(
1137            self.stream_id.is_client_initiated(),
1138            "stream id must be odd"
1139        );
1140        self
1141    }
1142
1143    /// Creates a new configured HTTP/2 client backed by `io`.
1144    ///
1145    /// It is expected that `io` already be in an appropriate state to commence
1146    /// the [HTTP/2 handshake]. The handshake is completed once both the connection
1147    /// preface and the initial settings frame is sent by the client.
1148    ///
1149    /// The handshake future does not wait for the initial settings frame from the
1150    /// server.
1151    ///
1152    /// Returns a future which resolves to the [`Connection`] / [`SendRequest`]
1153    /// tuple once the HTTP/2 handshake has been completed.
1154    ///
1155    /// This function also allows the caller to configure the send payload data
1156    /// type. See [Outbound data type] for more details.
1157    ///
1158    /// [HTTP/2 handshake]: http://httpwg.org/specs/rfc7540.html#ConnectionHeader
1159    /// [`Connection`]: struct.Connection.html
1160    /// [`SendRequest`]: struct.SendRequest.html
1161    /// [Outbound data type]: ../index.html#outbound-data-type.
1162    ///
1163    /// # Examples
1164    ///
1165    /// Basic usage:
1166    ///
1167    /// ```
1168    /// # use tokio::io::{AsyncRead, AsyncWrite};
1169    /// # use h2::client::*;
1170    /// # use bytes::Bytes;
1171    /// #
1172    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1173    ///     -> Result<((SendRequest<Bytes>, Connection<T, Bytes>)), h2::Error>
1174    /// # {
1175    /// // `client_fut` is a future representing the completion of the HTTP/2
1176    /// // handshake.
1177    /// let client_fut = Builder::new()
1178    ///     .handshake(my_io);
1179    /// # client_fut.await
1180    /// # }
1181    /// #
1182    /// # pub fn main() {}
1183    /// ```
1184    ///
1185    /// Configures the send-payload data type. In this case, the outbound data
1186    /// type will be `&'static [u8]`.
1187    ///
1188    /// ```
1189    /// # use tokio::io::{AsyncRead, AsyncWrite};
1190    /// # use h2::client::*;
1191    /// #
1192    /// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1193    /// # -> Result<((SendRequest<&'static [u8]>, Connection<T, &'static [u8]>)), h2::Error>
1194    /// # {
1195    /// // `client_fut` is a future representing the completion of the HTTP/2
1196    /// // handshake.
1197    /// let client_fut = Builder::new()
1198    ///     .handshake::<_, &'static [u8]>(my_io);
1199    /// # client_fut.await
1200    /// # }
1201    /// #
1202    /// # pub fn main() {}
1203    /// ```
1204    pub fn handshake<T, B>(
1205        &self,
1206        io: T,
1207    ) -> impl Future<Output = Result<(SendRequest<B>, Connection<T, B>), crate::Error>>
1208    where
1209        T: AsyncRead + AsyncWrite + Unpin,
1210        B: Buf,
1211    {
1212        Connection::handshake2(io, self.clone())
1213    }
1214}
1215
1216impl Default for Builder {
1217    fn default() -> Builder {
1218        Builder::new()
1219    }
1220}
1221
1222/// Creates a new configured HTTP/2 client with default configuration
1223/// values backed by `io`.
1224///
1225/// It is expected that `io` already be in an appropriate state to commence
1226/// the [HTTP/2 handshake]. See [Handshake] for more details.
1227///
1228/// Returns a future which resolves to the [`Connection`] / [`SendRequest`]
1229/// tuple once the HTTP/2 handshake has been completed. The returned
1230/// [`Connection`] instance will be using default configuration values. Use
1231/// [`Builder`] to customize the configuration values used by a [`Connection`]
1232/// instance.
1233///
1234/// [HTTP/2 handshake]: http://httpwg.org/specs/rfc7540.html#ConnectionHeader
1235/// [Handshake]: ../index.html#handshake
1236/// [`Connection`]: struct.Connection.html
1237/// [`SendRequest`]: struct.SendRequest.html
1238///
1239/// # Examples
1240///
1241/// ```
1242/// # use tokio::io::{AsyncRead, AsyncWrite};
1243/// # use h2::client;
1244/// # use h2::client::*;
1245/// #
1246/// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T) -> Result<(), h2::Error>
1247/// # {
1248/// let (send_request, connection) = client::handshake(my_io).await?;
1249/// // The HTTP/2 handshake has completed, now start polling
1250/// // `connection` and use `send_request` to send requests to the
1251/// // server.
1252/// # Ok(())
1253/// # }
1254/// #
1255/// # pub fn main() {}
1256/// ```
1257pub async fn handshake<T>(io: T) -> Result<(SendRequest<Bytes>, Connection<T, Bytes>), crate::Error>
1258where
1259    T: AsyncRead + AsyncWrite + Unpin,
1260{
1261    let builder = Builder::new();
1262    builder
1263        .handshake(io)
1264        .instrument(tracing::trace_span!("client_handshake"))
1265        .await
1266}
1267
1268// ===== impl Connection =====
1269
1270async fn bind_connection<T>(io: &mut T) -> Result<(), crate::Error>
1271where
1272    T: AsyncRead + AsyncWrite + Unpin,
1273{
1274    tracing::debug!("binding client connection");
1275
1276    let msg: &'static [u8] = b"PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n";
1277    io.write_all(msg).await.map_err(crate::Error::from_io)?;
1278
1279    tracing::debug!("client connection bound");
1280
1281    Ok(())
1282}
1283
1284impl<T, B> Connection<T, B>
1285where
1286    T: AsyncRead + AsyncWrite + Unpin,
1287    B: Buf,
1288{
1289    async fn handshake2(
1290        mut io: T,
1291        builder: Builder,
1292    ) -> Result<(SendRequest<B>, Connection<T, B>), crate::Error> {
1293        bind_connection(&mut io).await?;
1294
1295        // Create the codec
1296        let mut codec = Codec::new(io);
1297
1298        if let Some(max) = builder.settings.max_frame_size() {
1299            codec.set_max_recv_frame_size(max as usize);
1300        }
1301
1302        if let Some(max) = builder.settings.max_header_list_size() {
1303            codec.set_max_recv_header_list_size(max as usize);
1304        }
1305
1306        // Send initial settings frame
1307        codec
1308            .buffer(builder.settings.clone().into())
1309            .expect("invalid SETTINGS frame");
1310
1311        let inner = proto::Connection::new(
1312            codec,
1313            proto::Config {
1314                next_stream_id: builder.stream_id,
1315                initial_max_send_streams: builder.initial_max_send_streams,
1316                max_send_buffer_size: builder.max_send_buffer_size,
1317                reset_stream_duration: builder.reset_stream_duration,
1318                reset_stream_max: builder.reset_stream_max,
1319                remote_reset_stream_max: builder.pending_accept_reset_stream_max,
1320                local_error_reset_streams_max: builder.local_max_error_reset_streams,
1321                settings: builder.settings.clone(),
1322            },
1323        );
1324        let send_request = SendRequest {
1325            inner: inner.streams().clone(),
1326            pending: None,
1327        };
1328
1329        let mut connection = Connection { inner };
1330        if let Some(sz) = builder.initial_target_connection_window_size {
1331            connection.set_target_window_size(sz);
1332        }
1333
1334        Ok((send_request, connection))
1335    }
1336
1337    /// Sets the target window size for the whole connection.
1338    ///
1339    /// If `size` is greater than the current value, then a `WINDOW_UPDATE`
1340    /// frame will be immediately sent to the remote, increasing the connection
1341    /// level window by `size - current_value`.
1342    ///
1343    /// If `size` is less than the current value, nothing will happen
1344    /// immediately. However, as window capacity is released by
1345    /// [`FlowControl`] instances, no `WINDOW_UPDATE` frames will be sent
1346    /// out until the number of "in flight" bytes drops below `size`.
1347    ///
1348    /// The default value is 65,535.
1349    ///
1350    /// See [`FlowControl`] documentation for more details.
1351    ///
1352    /// [`FlowControl`]: ../struct.FlowControl.html
1353    /// [library level]: ../index.html#flow-control
1354    pub fn set_target_window_size(&mut self, size: u32) {
1355        assert!(size <= proto::MAX_WINDOW_SIZE);
1356        self.inner.set_target_window_size(size);
1357    }
1358
1359    /// Set a new `INITIAL_WINDOW_SIZE` setting (in octets) for stream-level
1360    /// flow control for received data.
1361    ///
1362    /// The `SETTINGS` will be sent to the remote, and only applied once the
1363    /// remote acknowledges the change.
1364    ///
1365    /// This can be used to increase or decrease the window size for existing
1366    /// streams.
1367    ///
1368    /// # Errors
1369    ///
1370    /// Returns an error if a previous call is still pending acknowledgement
1371    /// from the remote endpoint.
1372    pub fn set_initial_window_size(&mut self, size: u32) -> Result<(), crate::Error> {
1373        assert!(size <= proto::MAX_WINDOW_SIZE);
1374        self.inner.set_initial_window_size(size)?;
1375        Ok(())
1376    }
1377
1378    /// Takes a `PingPong` instance from the connection.
1379    ///
1380    /// # Note
1381    ///
1382    /// This may only be called once. Calling multiple times will return `None`.
1383    pub fn ping_pong(&mut self) -> Option<PingPong> {
1384        self.inner.take_user_pings().map(PingPong::new)
1385    }
1386
1387    /// Returns the maximum number of concurrent streams that may be initiated
1388    /// by this client.
1389    ///
1390    /// This limit is configured by the server peer by sending the
1391    /// [`SETTINGS_MAX_CONCURRENT_STREAMS` parameter][1] in a `SETTINGS` frame.
1392    /// This method returns the currently acknowledged value received from the
1393    /// remote.
1394    ///
1395    /// [1]: https://tools.ietf.org/html/rfc7540#section-5.1.2
1396    pub fn max_concurrent_send_streams(&self) -> usize {
1397        self.inner.max_send_streams()
1398    }
1399    /// Returns the maximum number of concurrent streams that may be initiated
1400    /// by the server on this connection.
1401    ///
1402    /// This returns the value of the [`SETTINGS_MAX_CONCURRENT_STREAMS`
1403    /// parameter][1] sent in a `SETTINGS` frame that has been
1404    /// acknowledged by the remote peer. The value to be sent is configured by
1405    /// the [`Builder::max_concurrent_streams`][2] method before handshaking
1406    /// with the remote peer.
1407    ///
1408    /// [1]: https://tools.ietf.org/html/rfc7540#section-5.1.2
1409    /// [2]: ../struct.Builder.html#method.max_concurrent_streams
1410    pub fn max_concurrent_recv_streams(&self) -> usize {
1411        self.inner.max_recv_streams()
1412    }
1413}
1414
1415impl<T, B> Future for Connection<T, B>
1416where
1417    T: AsyncRead + AsyncWrite + Unpin,
1418    B: Buf,
1419{
1420    type Output = Result<(), crate::Error>;
1421
1422    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1423        self.inner.maybe_close_connection_if_no_streams();
1424        self.inner.poll(cx).map_err(Into::into)
1425    }
1426}
1427
1428impl<T, B> fmt::Debug for Connection<T, B>
1429where
1430    T: AsyncRead + AsyncWrite,
1431    T: fmt::Debug,
1432    B: fmt::Debug + Buf,
1433{
1434    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
1435        fmt::Debug::fmt(&self.inner, fmt)
1436    }
1437}
1438
1439// ===== impl ResponseFuture =====
1440
1441impl Future for ResponseFuture {
1442    type Output = Result<Response<RecvStream>, crate::Error>;
1443
1444    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1445        let (parts, _) = ready!(self.inner.poll_response(cx))?.into_parts();
1446        let body = RecvStream::new(FlowControl::new(self.inner.clone()));
1447
1448        Poll::Ready(Ok(Response::from_parts(parts, body)))
1449    }
1450}
1451
1452impl ResponseFuture {
1453    /// Returns the stream ID of the response stream.
1454    ///
1455    /// # Panics
1456    ///
1457    /// If the lock on the stream store has been poisoned.
1458    pub fn stream_id(&self) -> crate::StreamId {
1459        crate::StreamId::from_internal(self.inner.stream_id())
1460    }
1461    /// Returns a stream of PushPromises
1462    ///
1463    /// # Panics
1464    ///
1465    /// If this method has been called before
1466    /// or the stream was itself was pushed
1467    pub fn push_promises(&mut self) -> PushPromises {
1468        if self.push_promise_consumed {
1469            panic!("Reference to push promises stream taken!");
1470        }
1471        self.push_promise_consumed = true;
1472        PushPromises {
1473            inner: self.inner.clone(),
1474        }
1475    }
1476}
1477
1478// ===== impl PushPromises =====
1479
1480impl PushPromises {
1481    /// Get the next `PushPromise`.
1482    pub async fn push_promise(&mut self) -> Option<Result<PushPromise, crate::Error>> {
1483        futures_util::future::poll_fn(move |cx| self.poll_push_promise(cx)).await
1484    }
1485
1486    #[doc(hidden)]
1487    pub fn poll_push_promise(
1488        &mut self,
1489        cx: &mut Context<'_>,
1490    ) -> Poll<Option<Result<PushPromise, crate::Error>>> {
1491        match self.inner.poll_pushed(cx) {
1492            Poll::Ready(Some(Ok((request, response)))) => {
1493                let response = PushedResponseFuture {
1494                    inner: ResponseFuture {
1495                        inner: response,
1496                        push_promise_consumed: false,
1497                    },
1498                };
1499                Poll::Ready(Some(Ok(PushPromise { request, response })))
1500            }
1501            Poll::Ready(Some(Err(e))) => Poll::Ready(Some(Err(e.into()))),
1502            Poll::Ready(None) => Poll::Ready(None),
1503            Poll::Pending => Poll::Pending,
1504        }
1505    }
1506}
1507
1508#[cfg(feature = "stream")]
1509impl futures_core::Stream for PushPromises {
1510    type Item = Result<PushPromise, crate::Error>;
1511
1512    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
1513        self.poll_push_promise(cx)
1514    }
1515}
1516
1517// ===== impl PushPromise =====
1518
1519impl PushPromise {
1520    /// Returns a reference to the push promise's request headers.
1521    pub fn request(&self) -> &Request<()> {
1522        &self.request
1523    }
1524
1525    /// Returns a mutable reference to the push promise's request headers.
1526    pub fn request_mut(&mut self) -> &mut Request<()> {
1527        &mut self.request
1528    }
1529
1530    /// Consumes `self`, returning the push promise's request headers and
1531    /// response future.
1532    pub fn into_parts(self) -> (Request<()>, PushedResponseFuture) {
1533        (self.request, self.response)
1534    }
1535}
1536
1537// ===== impl PushedResponseFuture =====
1538
1539impl Future for PushedResponseFuture {
1540    type Output = Result<Response<RecvStream>, crate::Error>;
1541
1542    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1543        Pin::new(&mut self.inner).poll(cx)
1544    }
1545}
1546
1547impl PushedResponseFuture {
1548    /// Returns the stream ID of the response stream.
1549    ///
1550    /// # Panics
1551    ///
1552    /// If the lock on the stream store has been poisoned.
1553    pub fn stream_id(&self) -> crate::StreamId {
1554        self.inner.stream_id()
1555    }
1556}
1557
1558// ===== impl Peer =====
1559
1560impl Peer {
1561    pub fn convert_send_message(
1562        id: StreamId,
1563        request: Request<()>,
1564        protocol: Option<Protocol>,
1565        end_of_stream: bool,
1566    ) -> Result<Headers, SendError> {
1567        use http::request::Parts;
1568
1569        let (
1570            Parts {
1571                method,
1572                uri,
1573                headers,
1574                version,
1575                ..
1576            },
1577            _,
1578        ) = request.into_parts();
1579
1580        let is_connect = method == Method::CONNECT;
1581
1582        // Build the set pseudo header set. All requests will include `method`
1583        // and `path`.
1584        let mut pseudo = Pseudo::request(method, uri, protocol);
1585
1586        if pseudo.scheme.is_none() {
1587            // If the scheme is not set, then there are a two options.
1588            //
1589            // 1) Authority is not set. In this case, a request was issued with
1590            //    a relative URI. This is permitted **only** when forwarding
1591            //    HTTP 1.x requests. If the HTTP version is set to 2.0, then
1592            //    this is an error.
1593            //
1594            // 2) Authority is set, then the HTTP method *must* be CONNECT.
1595            //
1596            // It is not possible to have a scheme but not an authority set (the
1597            // `http` crate does not allow it).
1598            //
1599            if pseudo.authority.is_none() {
1600                if version == Version::HTTP_2 {
1601                    return Err(UserError::MissingUriSchemeAndAuthority.into());
1602                } else {
1603                    // This is acceptable as per the above comment. However,
1604                    // HTTP/2 requires that a scheme is set. Since we are
1605                    // forwarding an HTTP 1.1 request, the scheme is set to
1606                    // "http".
1607                    pseudo.set_scheme(uri::Scheme::HTTP);
1608                }
1609            } else if !is_connect {
1610                // TODO: Error
1611            }
1612        }
1613
1614        // Create the HEADERS frame
1615        let mut frame = Headers::new(id, pseudo, headers);
1616
1617        if end_of_stream {
1618            frame.set_end_stream()
1619        }
1620
1621        Ok(frame)
1622    }
1623}
1624
1625impl proto::Peer for Peer {
1626    type Poll = Response<()>;
1627
1628    const NAME: &'static str = "Client";
1629
1630    fn r#dyn() -> proto::DynPeer {
1631        proto::DynPeer::Client
1632    }
1633
1634    /*
1635    fn is_server() -> bool {
1636        false
1637    }
1638    */
1639
1640    fn convert_poll_message(
1641        pseudo: Pseudo,
1642        fields: HeaderMap,
1643        stream_id: StreamId,
1644    ) -> Result<Self::Poll, Error> {
1645        let mut b = Response::builder();
1646
1647        b = b.version(Version::HTTP_2);
1648
1649        if let Some(status) = pseudo.status {
1650            b = b.status(status);
1651        }
1652
1653        let mut response = match b.body(()) {
1654            Ok(response) => response,
1655            Err(_) => {
1656                // TODO: Should there be more specialized handling for different
1657                // kinds of errors
1658                return Err(Error::library_reset(stream_id, Reason::PROTOCOL_ERROR));
1659            }
1660        };
1661
1662        *response.headers_mut() = fields;
1663
1664        Ok(response)
1665    }
1666}